Partial algebra

In abstract algebra, a partial algebra is a generalization of universal algebra to partial operations.[1][2]

Example(s)

Structure

There is a "Meta Birkhoff Theorem" by Andreka, Nemeti and Sain (1982).[1]

gollark: Your last statement seemed very general.
gollark: It doesn't really have more security problems than usual. It's just bad.
gollark: I don't see how educating people on rights and whatever you suggested would fix a problem you claim is caused by people misusing systems.
gollark: Some are worse than others.
gollark: Besides, the growing trends toward unfreedom do not actually seem to be driven by things related to courts.

References

  1. Peter Burmeister (1993). "Partial algebras - an introductory survey". In Ivo G. Rosenberg; Gert Sabidussi (eds.). Algebras and Orders. Springer Science & Business Media. pp. 1–70. ISBN 978-0-7923-2143-9.
  2. George A. Grätzer (2008). Universal Algebra (2nd ed.). Springer Science & Business Media. Chapter 2. Partial algebras. ISBN 978-0-387-77487-9.
  3. Foulis, D. J.; Bennett, M. K. (1994). "Effect algebras and unsharp quantum logics". Foundations of Physics. 24 (10): 1331. doi:10.1007/BF02283036. hdl:10338.dmlcz/142815.

Further reading

  • Peter Burmeister (2002) [1986]. A Model Theoretic Oriented Approach to Partial Algebras. CiteSeerX 10.1.1.92.6134.
  • Horst Reichel (1984). Structural induction on partial algebras. Akademie-Verlag.
  • Horst Reichel (1987). Initial computability, algebraic specifications, and partial algebras. Clarendon Press. ISBN 978-0-19-853806-6.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.