Papkovich–Neuber solution

The PapkovichNeuber solution is a technique for generating analytic solutions to the Newtonian incompressible Stokes equations, though it was originally developed to solve the equations of linear elasticity.

It can be shown that any Stokes flow with body force can be written in the form:

where is a harmonic vector potential and is a harmonic scalar potential. The properties and ease of construction of harmonic functions makes the Papkovich–Neuber solution a powerful technique for solving the Stokes Equations in a variety of domains.

Further reading

  • Neuber, H. (1934), "Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie", Journal of Applied Mathematics and Mechanics, 14 (4), pp. 203–212, Bibcode:1934ZaMM...14..203N, doi:10.1002/zamm.19340140404.
  • Papkovish, P. F. (1932), "Solution Générale des équations differentielles fondamentales d'élasticité exprimée par trois fonctions harmoniques", Compt. Rend. Acad. Sci. Paris, 195, pp. 513–515.


gollark: You can also publicly know who is participating if you monitor krist transactions.
gollark: Oh, seems fine then.
gollark: Or manipulate the timestamps by a few ms until it comes out right.
gollark: Then you could manipulate it.
gollark: Although I don't think the limited-time thing would work unless the hash function is *very* slow, and then the server would need to spend lots of time on it.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.