Papkovich–Neuber solution

The PapkovichNeuber solution is a technique for generating analytic solutions to the Newtonian incompressible Stokes equations, though it was originally developed to solve the equations of linear elasticity.

It can be shown that any Stokes flow with body force can be written in the form:

where is a harmonic vector potential and is a harmonic scalar potential. The properties and ease of construction of harmonic functions makes the Papkovich–Neuber solution a powerful technique for solving the Stokes Equations in a variety of domains.

Further reading

  • Neuber, H. (1934), "Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie", Journal of Applied Mathematics and Mechanics, 14 (4), pp. 203–212, Bibcode:1934ZaMM...14..203N, doi:10.1002/zamm.19340140404.
  • Papkovish, P. F. (1932), "Solution Générale des équations differentielles fondamentales d'élasticité exprimée par trois fonctions harmoniques", Compt. Rend. Acad. Sci. Paris, 195, pp. 513–515.


gollark: There are, I imagine, a lot of issues in other fields I don't know as much about.
gollark: Quantum computing, anything about computers, a decent amount of physics, AI.
gollark: Why would it be *their* fault?
gollark: I don't know exactly why.
gollark: The popular conceptions of lots of things are just entirely wrong.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.