PTAS reduction

In computational complexity theory, a PTAS reduction is an approximation-preserving reduction that is often used to perform reductions between solutions to optimization problems. It preserves the property that a problem has a polynomial time approximation scheme (PTAS) and is used to define completeness for certain classes of optimization problems such as APX. Notationally, if there is a PTAS reduction from a problem A to a problem B, we write .

With ordinary polynomial-time many-one reductions, if we can describe a reduction from a problem A to a problem B, then any polynomial-time solution for B can be composed with that reduction to obtain a polynomial-time solution for the problem A. Similarly, our goal in defining PTAS reductions is so that given a PTAS reduction from an optimization problem A to a problem B, a PTAS for B can be composed with the reduction to obtain a PTAS for the problem A.

Definition

Formally, we define a PTAS reduction from A to B using three polynomial-time computable functions, f, g, and α, with the following properties:

  • f maps instances of problem A to instances of problem B.
  • g takes an instance x of problem A, an approximate solution to the corresponding problem in B, and an error parameter ε and produces an approximate solution to x.
  • α maps error parameters for solutions to instances of problem A to error parameters for solutions to problem B.
  • If the solution y to (an instance of problem B) is at most times worse than the optimal solution, then the corresponding solution to x (an instance of problem A) is at most times worse than the optimal solution.

Properties

From the definition it is straightforward to show that:

  • and
  • and

L-reductions imply PTAS reductions. As a result, one may show the existence of a PTAS reduction via a L-reduction instead.[1]

PTAS reductions are used to define completeness in APX, the class of optimization problems with constant-factor approximation algorithms.

gollark: So that may be worse data than I thought.
gollark: Oh. Hmm. Yeees.
gollark: At worst I figure they'd probably manage to be off by a factor of two, which puts it at an upper bound of ~4%.
gollark: I actually expected it was *higher* than that, but apparently not?
gollark: I think it's around, what, 15%?

See also

References

  1. Crescenzi, Pierluigi (1997). "A Short Guide To Approximation Preserving Reductions". Proceedings of the 12th Annual IEEE Conference on Computational Complexity. Washington, D.C.: IEEE Computer Society: 262–.
  • Ingo Wegener. Complexity Theory: Exploring the Limits of Efficient Algorithms. ISBN 3-540-21045-8. Chapter 8, pp. 110111. Google Books preview
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.