PDE-constrained optimization

PDE-constrained optimization is a subset of mathematical optimization where at least one of the constraints may be expressed as a partial differential equation.[1] Typical domains where these problems arise include aerodynamics, computational fluid dynamics, image segmentation, and inverse problems.[2] A standard formulation of PDE-constrained optimization encountered in a number of disciplines is given by:[3]

where is the control variable and is the Euclidean norm. Closed-form solutions are generally unavailable for PDE-constrained optimization problems, necessitating the development of numerical methods.[4][5][6]

Applications

Optimal control of bacterial chemotaxis system

The following example comes from p. 20-21 of Pearson.[3] Chemotaxis is the movement of an organism in response to an external chemical stimulus. One problem of particular interest is in managing the spatial dynamics of bacteria that are subject to chemotaxis to achieve some desired result. For a cell density and concentration density of a chemoattractant, it is possible to formulate a boundary control problem:

where is the ideal cell density, is the ideal concentration density, and is the control variable. This objective function is subject to the dynamics:

where is the Laplace operator.

gollark: If only it was possible for computers to deal with the incredible message volume of a few things per second.
gollark: Wow. Incredible. How will my computer deal with the onslaught of spam it's not even listening to?
gollark: https://pastebin.com/wvirT4TC you, also.
gollark: Which they don't, unless that was changed recently.
gollark: Oh, I thought you meant that they always broadcast without waiting for a ping.

See also

References

  1. Leugering, Günter; Benner, Peter; Engell, Sebastian; Griewank, Andreas; Harbrecht, Helmut; Hinze, Michael; Rannacher, Rolf; Ulbrich, Stefan, eds. (2014). "Trends in PDE Constrained Optimization". International Series of Numerical Mathematics. Springer. doi:10.1007/978-3-319-05083-6. ISSN 0373-3149.
  2. Lorenz T. Biegler; Omar Ghattas; Matthias Heinkenschloss; David Keyes; Bart van Bloemen Waanders, eds. (2007-01-01). Real-Time PDE-Constrained Optimization. Computational Science & Engineering. Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898718935. ISBN 978-0-89871-621-4.
  3. Pearson, John (May 16, 2018). "PDE-Constrained Optimization in Physics, Chemistry & Biology: Modelling and Numerical Methods" (PDF). University of Edinburgh.
  4. Biros, George; Ghattas, Omar (2005-01-01). "Parallel Lagrange--Newton--Krylov--Schur Methods for PDE-Constrained Optimization. Part I: The Krylov--Schur Solver". SIAM Journal on Scientific Computing. 27 (2): 687–713. doi:10.1137/S106482750241565X. ISSN 1064-8275.
  5. Antil, Harbir; Heinkenschloss, Matthias; Hoppe, Ronald H. W.; Sorensen, Danny C. (2010-08-01). "Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables". Computing and Visualization in Science. 13 (6): 249–264. doi:10.1007/s00791-010-0142-4. ISSN 1433-0369.
  6. Schöberl, Joachim; Zulehner, Walter (2007-01-01). "Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems". SIAM Journal on Matrix Analysis and Applications. 29 (3): 752–773. doi:10.1137/060660977. ISSN 0895-4798.
  7. Jameson, Antony (2003). "Aerodynamic Shape Optimization Using the Adjoint Method" (PDF). Stanford University.
  8. Hazra, S. B.; Schulz, V.; Brezillon, J.; Gauger, N. R. (2005-03-20). "Aerodynamic shape optimization using simultaneous pseudo-timestepping". Journal of Computational Physics. 204 (1): 46–64. doi:10.1016/j.jcp.2004.10.007. ISSN 0021-9991.
  9. Somayaji, Mahadevabharath R.; Xenos, Michalis; Zhang, Libin; Mekarski, Megan; Linninger, Andreas A. (2008-01-01). "Systematic design of drug delivery therapies". Computers & Chemical Engineering. Process Systems Engineering: Contributions on the State-of-the-Art. 32 (1): 89–98. doi:10.1016/j.compchemeng.2007.06.014. ISSN 0098-1354.
  10. Antil, Harbir; Nochetto, Ricardo H.; Venegas, Pablo (2017-10-19). "Optimizing the Kelvin force in a moving target subdomain". Mathematical Models and Methods in Applied Sciences. 28 (01): 95–130. arXiv:1612.07763. doi:10.1142/S0218202518500033. ISSN 0218-2025.
  11. Egger, Herbert; Engl, Heinz W. (2005). "Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates". Inverse Problems. 21 (3): 1027–1045.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.