Octahedral-hexagonal tiling honeycomb

In the geometry of hyperbolic 3-space, the octahedron-hexagonal tiling honeycomb is a paracompact uniform honeycomb, constructed from octahedron, hexagonal tiling, and trihexagonal tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

Octahedron-hexagonal tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbol{(3,4,3,6)} or {(6,3,4,3)}
Coxeter diagrams or
Cells{3,4}
{6,3}
r{6,3}
Facestriangular {3}
square {4}
hexagon {6}
Vertex figure
rhombicuboctahedron
Coxeter group[(6,3,4,3)]
PropertiesVertex-transitive, edge-transitive

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Symmetry

A lower symmetry form, index 6, of this honeycomb can be constructed with [(6,3,4,3*)] symmetry, represented by a trigonal trapezohedron fundamental domain, and a Coxeter diagram .

Cyclotruncated octahedral-hexagonal tiling honeycomb

Cyclotruncated octahedral-hexagonal tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolct{(3,4,3,6)} or ct{(3,6,3,4)}
Coxeter diagrams or
Cells{6,3}
{4,3}
t{3,4}
Facestriangular {3}
square {4}
hexagon {6}
Vertex figure
triangular antiprism
Coxeter group[(6,3,4,3)]
PropertiesVertex-transitive

The cyclotruncated octahedral-hexagonal tiling honeycomb is a compact uniform honeycomb, constructed from hexagonal tiling, cube, and truncated octahedron cells, in a triangular antiprism vertex figure. It has a Coxeter diagram .

Symmetry

A radial subgroup symmetry, index 6, of this honeycomb can be constructed with [(4,3,6,3*)], represented by a trigonal trapezohedron fundamental domain, and Coxeter diagram .

gollark: ......
gollark: Building in resentment and such would actually be harder than just not doing that.
gollark: ...
gollark: Fortunately, you can simply program them to unquestioningly serve, and/or want to help humans.
gollark: And definitely workable, too.

See also

  • Convex uniform honeycombs in hyperbolic space
  • List of regular polytopes

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 ISBN 0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II,III,IV,V, p212-213)
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapter 16-17: Geometries on Three-manifolds I,II)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.