ONIOM

The ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) is a computational approach developed by Morokuma and co-workers. ONIOM is the hybrid method that enables different ab initio or semi-empirical methods to be applied to different parts of a molecule/system and combined to produce reliable geometry and energy at reduced computational time.[1][2][3]

ONIOM computational approach was found particularly useful for biomolecular systems [4] as well as for transition metal complexes and catalysts.[5]

Codes that support ONIOM

gollark: Oliver also sat in his chair.
gollark: u haz no spelling
gollark: We have reached a reasonable concordance.
gollark: Just agree to the election terms.
gollark: Also we need gibson/umnikos cooperation.

See also

References

  1. S. Dapprich; I. Komaromi; K.S. Byun; K. Morokuma & M.J. Frisch (1999). "A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives". Journal of Molecular Structure: THEOCHEM. 461-462: 1. doi:10.1016/S0166-1280(98)00475-8.
  2. Vreven, T; Morokuma, K (2006). "Chapter 3 Hybrid Methods: ONIOM(QM:MM) and QM/MM". Annual Reports in Computational Chemistry. 2: 35. doi:10.1016/S1574-1400(06)02003-2.
  3. Svensson, Mats; Humbel, StéPhane; Froese, Robert D. J.; Matsubara, Toshiaki; Sieber, Stefan; Morokuma, Keiji (1996). "ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2+ H2Oxidative Addition". The Journal of Physical Chemistry. 100 (50): 19357. doi:10.1021/jp962071j.
  4. Senn, H; Thiel, W (2007). "QM/MM studies of enzymes". Current Opinion in Chemical Biology. 11 (2): 182–7. doi:10.1016/j.cbpa.2007.01.684. PMID 17307018.
  5. Ananikov, Valentine P.; Musaev, Djamaladdin G.; Morokuma, Keiji (2010). "Real size of ligands, reactants and catalysts: Studies of structure, reactivity and selectivity by ONIOM and other hybrid computational approaches☆". Journal of Molecular Catalysis A: Chemical. 324: 104. doi:10.1016/j.molcata.2010.03.015.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.