New Jersey amber

New Jersey Amber, sometimes called Raritan amber, is amber found in the Raritan and Magothy Formations of the Central Atlantic (Eastern) coast of the United States. The amber is dated to be of Late Cretaceous, Turonian age, based on pollen analysis of the host formations. The amber has been known since the nineteenth century, with several of the old clay-pit sites now producing many amber specimens for study. A number of organism fossils have been described from inclusions in the amber, including fungi, plants, tardigrades, insects, and feathers. The first identified Cretaceous age ant was described from a fossil found in New Jersey in 1966.

Brownimecia clavata holotype, lateral view, fossil in New jersey amber, specimen number AMNH-NJ667

Occurrence

Though named after New Jersey, the fossil-bearing strata of the Raritan and overlying Magothy formations are also exposed in several neighboring U.S. states, including Maryland through south and central New Jersey, across Staten Island and Long Island (coastal areas of New York state), to a northern exposure at Martha's Vineyard, an island of Massachusetts.[1]

Of the two formations that New Jersey amber is found in, the Raritan Formation underlies the Magothy Formation. The Magothy formation is reported by Wilson's 1967 paper describing Sphecomyrma freyi as having exposures in Maryland, New Jersey, New York, Delaware, and other unspecified islands along the New England coastline. The formation consists of gray to dark brown clay beds interlayered in light-colored sands. In the clay layers are lignite lenses, leaf impressions, and the amber. At the time of the paper's publication, the age was uncertain, and given by Wilson and Carpenter as approximately 100 million years old.[2] Amber deposits of the Raritan Formation are mainly in the Old Bridge sand member and South Amboy Fire Clay Member, with the latter being fossilized in situ, with no disturbance after deposition. Palynological dating of the South Amboy Fire clay has returned a Turonian age, placing the members in the ComplexiopollisSantanacites palynostratigraphic zones.[1]

Amber specimens are recovered from the South Amboy Fire Clay member, part of the Raritan Formation. Deposited in lagoons and saltwater marshes along the Cretaceous eastern seaboard.[3] The lithology exposed in the Crossmans clay pits shows that the lagoons and marshes had brackish water channels where water flow diminished and anoxic conditions formed. This is supported by the presence of pyrite and marcasite on and around amber specimens, with some amber totally encased in the iron sulphides. The number of insect groups that need fresh water to survive, such as caddisflies, indicates that fresh water was close to the delta area.[1]

Amber was first mentioned in 1821 by naturalist Gerard Troost, who described a specimen which contained a group of fossil scale insects from an outcrop at Cape Sable, Maryland.[1] Hollick reported in 1905 that during the height of clay mining at the turn of the 20th century, amber was found in such volumes that it was saved, and burned during the winter for heat. A number of the clay mines are now sources of amber for study.[1] The White Oaks site (or White Oaks pit) is part of the Old Crossman's pit clay mine in Sayreville, New Jersey. It contains outcrops of the amber-bearing South Amboy Fire Clay that are noted to be rich in inclusions.[4]

Chemistry

Amber preserved in resin block

New Jersey amber is grouped by Anderson 1992 as a Class Ib amber, being composed of labdanoid diterpenes, and lacking a presence of succinic acid in the structure.[5] Ragazzi et al in 2003 listed the possible plant families the amber may have been produced by as including Cupressaceae, Araucariaceae, or Hamamelidaceae,[6] but only Cupressaceae was listed by Bisulca et al.[5] The amber is noted as being insoluble in solutions of both ethyl ether and ethanol. Ragazzi et al indicated that New Jersey amber had a distinct amount of sulphur, 0.29%, included in its chemical composition.[6] The color of the amber ranges from clear yellows and yellow oranges through opaque yellows and reds. The amber is noted to be brittle and friable, with specimens noted to crack and craze. Deep-red amber specimens are also noted to form deep needle-like cracks.[5] A series of tests on ambers, including New Jersey amber, was published in 2012 by Bisulca et al. Exposure to a combination of light and humidity changes can cause significant crazing. The amber also has a distinct light absorbance curve that peaks in the ultraviolet B range at 385 nm. This is similar to the slightly older Burmese amber, which has an absorbance peak of 380 nm. Exposure to increase in temperature over a period of time has been shown to result in "yellowing" or darkening of the amber over a long period of time, though not to as significant a degree as seen in Baltic amber. Overall the stability of New Jersey amber is low due its UV absorption, making specimens susceptible to UV deterioration. The only conditions that Bisulca et al identified which seemed to produce stable New Jersey amber specimens were those that were anoxic.[5]

Botanical origin

Edward W. Berry notes that an "amber-like" substance preserved in resin canals of fossil conifer cones that he assigned to taxon "Dammara". Berry suggests that the majority of the amber in the taxon was considered araucarian in relationship by Barry and his contemporaries. Restudy of the fossils identify them as not araucarian, but cupressaceous in relation.[7] Wilson and Carpenter noted in 1966 that study of pollen spores and cones in the Mogathy and older Potomac Formation has suggested Metasequoia, Sequoiadendron or a related Taxodiaceae genus.[2] Work using pyrolysis gas chromatography-mass spectroscopy published in 2000 linked the amber to the "Dammara conescales, fossil Pityoxylon woods and possibly Juniperus hypnoides foliage. Further work identified methyl callitrisate, a identifying compound of Cupressaceae, in the ambers composition.[1]

Paleobiology

Sphecomyrma mesaki

The organisms preserved in New Jersey amber are diverse, with fungus, plant, and animal inclusions having been described. Fungi are represented by a single described Agaricales species. Plant fossils are also sparse, with conifer shoots from a Cupressaceae member, plus several undescribed flowers from a fagalean angiosperm.[1]

Of the inclusions found in Sayreville ambers, 34% are identified as dipterans,[4] while a 2001 paper notes that up to 20% of the inclusions found in New Jersey amber are of coccoid true bugs.[8] In 2010 the coccoid number was reported to only be 10% of all inclusions, while nematoceran flies made up 30% of the inclusions and parasitoid wasps also constituted 30%.[1]

In 1967 a pair of fossil ants were described from a fossil found at a New Jersey beach exposure. The ants were described as the extinct species Sphecomyrma freyi, and were the first conclusive ants identified from the Cretaceous.[2] Since that time a series of other ant genera have been identified in the New Jersey amber.[3]

Associated with the amber deposits at the Old Crossmans locality are fossil plants and insects preserved as fusianized charcoal remains. Ferns, gymnosperms, mosses and over one hundred angiosperm taxa have been identified from the Raritan formation lignite fossils.[9] The plants, such as Microvictoria svitkoana[9] and insects such as Paracupes svitkoi[10] were entombed in the anoxic forest floor and then transformed to carbon remains by possible forest fires. Specimens of amber show evidence of heating in fire as well, having large amounts of bubbles on outer surfaces, and a milky to chalky coloration. The fires are one of possible causes for the large amount of resin production that resulted in the amber.[1] A study published in 2011 suggested that the majority of the resin production was initiated by the boring activity of insects such as beetles. Trees that are being attacked by beetles and other insects will often produce defensive resin flows and the majority of New Jersey amber, about 70%, is grouped by the 2011 study as such. The authors indicated that fire-damaged resin specimens, ones with bubble froth and burned wood debris inclusions, were rare.[11] Description of a fossil Ptinidae beetle in 2015 has added more evidence for the possible insect origin of the resin production.[12]

Taxa

Fungi

  • Archaeomarasmius leggeti[13]

Plantae

  • Juniperus hypnoides?[1]
  • Fagales Genus and species indeterminate[1]

Tardigrades

Arachnids

Insects

Blattodea

  • Jantaropterix newjersey[19]

Coleoptera

  • Attagenus (Aethriostoma) turonianensis[20]
  • Cretocar luzzii[21]
  • Mesotachyporus puer.[22]
  • Phloeocharis agerata[23]
  • Sayrevilleus grimaldii[21]
  • Stegobium raritanensis[12]

Dipterans

Ephemeroptera

  • Amerogenia macrops[35]
  • Aureophlebia sinitshenkovae[36]
  • Borephemera goldmani[35]
  • Cretomitarcys luzzii[35]
  • Palaeometropus cassus[35]

Hemiptera

  • Eomatsucoccus casei[37]
  • Grimaldiella gregaria[37]
  • Grimaldiella resinophila[37]
  • Jersaphis luzzii[38]`
  • Jersicoccus kurthi[37]
  • Koteya luzzii[37]
  • Liadopsylla hesperia[39]
  • Labiococcus joosti[37]
  • Solicoccus nascimbenei[37]
  • Steingelia cretacea [37]
  • Turonicoccus bearsdleyi[37]
  • Turonicoccus grimaldii[37]
  • Perforissus muiri [40]
  • Postopsyllidium emilyae[41]
  • Vianagramma goldmani[42]
  • Vianathauma pericarti[42]

Hymenopterans

Formicidae

Mantodea

  • Ambermantis wozniaki[54]
  • Jersimantis luzzii[54]

Neuroptera

  • Jersimantispa [55]
  • Rhachibermissa splendida[56]

Psocopterans

Raphidioptera

  • Mesoraphidia luzzii[58]

Trichoptera

  • Agraylea (Nanoagraylea) cretaria[59]
  • Wormaldia praecursor [59]

Vertebrata

Aves genus and species indeterminate[1]

gollark: Either krist is already violating the EULA or it won't even if that happens.
gollark: * Which
gollark: What EULA?
gollark: One day krist will become the main world currency, you know.
gollark: Stupid HydroNITROGEN.

References

  1. Grimaldi, D.A.; Nascimbene, P.C. (2010). "Chapter 10: Raritan (New Jersey) amber". In Penney, D. (ed.). Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press. pp. 167–191. ISBN 978-0-9558636-4-6.
  2. Wilson, E.O.; Carpenter, F.M.; Brown, W.L. Jr. (1967). "The first Mesozoic ants". Science. 157 (3792): 1038–1040. Bibcode:1967Sci...157.1038W. doi:10.1126/science.157.3792.1038. PMID 17770424.
  3. Grimaldi, D.; Agosti, D.; Carpenter, J. M. (1997). "New and rediscovered primitive ants (Hymenoptera, Formicidae) in Cretaceous amber from New Jersey, and their phylogenetic relationships". American Museum Novitates. 3208: 1–43.
  4. Grimaldi, D.A.; Amorim, D.D.S.; Blagoderov, V. (2003). "The Mesozoic family Archizelmiridae (Diptera: Insecta)". Journal of Paleontology. 77 (2): 368–381. doi:10.1666/0022-3360(2003)077<0368:tmfadi>2.0.co;2.
  5. Bisulca, C.; Nascimbene, P.C.; Elkin, L.; Grimaldi, D.A. (2012). "Variation in the deterioration of fossil resins and implications for the conservation of fossils in amber". American Museum Novitates. 3734 (3734): 1–19. doi:10.1206/3734.2. hdl:2246/6158.
  6. Ragazzi, E.; Roghi, G.; Giaretta, A.; Gianolla, P. (2003). "Classification of amber based on thermal analysis". Thermochimica Acta. 404 (1–2): 43–54. doi:10.1016/S0040-6031(03)00062-5.
  7. Berry, E.W. (1911). The Flora of the Raritan Formation (PDF). Geological Survey of New Jersey.
  8. Johnson, C.; et al. (2001). "Acropyga and Azteca Ants (Hymenoptera: Formicidae) with Scale Insects (Sternorrhyncha: Coccoidea): 20 Million Years of Intimate Symbiosis" (PDF). American Museum Novitates. 3335: 1–18. doi:10.1206/0003-0082(2001)335<0001:AAAAHF>2.0.CO;2.
  9. Gandolfo, M.A.; Nixon, K.C.; Crepet, W.L. (2004). "Cretaceous flowers of Nymphaeaceae and implications for complex insect entrapment pollination mechanisms in early angiosperms". Proceedings of the National Academy of Sciences of the United States of America. 101 (21): 8056–8060. doi:10.1073/pnas.0402473101. PMC 419556. PMID 15148371.
  10. Lubkin, S.H. (2003). "Paracupes svitkoi (Coleoptera: Cupedidae) a new species from the Cretaceous of New Jersey" (PDF). Acta Zoologica Cracoviensia. 46: 189–194.
  11. McKellar, R.C.; Wolfe, A.P.; Muehlenbachs, K.; Tappert, R.; Engel, M.S.; Cheng, T.; Sánchez-Azofeifa, G.A. (2011). "Insect outbreaks produce distinctive carbon isotope signatures in defensive resins and fossiliferous ambers". Proceedings of the Royal Society B: Biological Sciences. 278 (1722): 3219–3224. doi:10.1098/rspb.2011.0276. PMC 3169029. PMID 21429925.
  12. Peris, D.; Philips, T.K.; Delclòs, X. (2015). "Ptinid beetles from the Cretaceous gymnosperm-dominated forests". Cretaceous Research. 52, Part B: 440–452. doi:10.1016/j.cretres.2014.02.009.
  13. Hibbett, D.S.; Grimaldi, D.S.; Donoghue, M.J. (1997). "Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of Homobasidiomycetes" (abstract). American Journal of Botany. 84 (8): 981–991. doi:10.2307/2446289. JSTOR 2446289.
  14. Bertolani, R.; Grimaldi, D. A. (2000). "A new eutardigrade (Tardigrada: Milnesiidae) in amber from the Upper Cretaceous (Turonian) of New Jersey.". In Grimaldi, D.A. (ed.). Studies on fossils in amber, with particular reference to the Cretaceous of New Jersey. Leiden: Backhuys publishers. pp. 103–110.
  15. Penney, D. (2004). "New spiders in Upper Cretaceous amber from New Jersey in the American Museum of Natural History (Arthropoda: Araneae)". Palaeontology. 47 (2): 367–375. doi:10.1111/j.0031-0239.2004.00365.x.
  16. Klompen, H.; Grimaldi, D.A. (2001). "First Mesozoic Record of a Parasitiform Mite: a Larval Argasid Tick in Cretaceous Amber (Acari: Ixodida: Argasidae)". Annals of the Entomological Society of America. 94 (1): 10–15. doi:10.1603/0013-8746(2001)094[0010:FMROAP]2.0.CO;2.
  17. Penney, D. (2002). "Spiders in upper cretaceous amber from New Jersey (Arthropoda: Araneae)". Palaeontology. 45 (4): 709–724. doi:10.1111/1475-4983.00256.
  18. Penny, D. (2005). "The fossil spider family Lagonomegopidae in Cretaceous ambers with descriptions of a new genus and species from Myanmar". The Journal of Arachnology. 33 (2): 439–444. doi:10.1636/04-55.1.
  19. Vrsansky, P.; Grimaldi, D.A. (2003). "Jantaropterix taxonomy, in Umenocoleoidea – an amazing lineage of aberrant insects (Insecta, Blattaria)". AMBA Projekty. 7 (1): 28–29.
  20. Peris, D.; Háva, J. (2016). "New species from Late Cretaceous New Jersey amber and stasis in subfamily Attageninae (Insecta: Coleoptera: Dermestidae)". Journal of Paleontology. 90 (3): 1–8. doi:10.1017/jpa.2016.51.
  21. Gratshev, V.G.; Zherikhin, V.V. (2000). "The weevils from the Late Cretaceous New Jersey Amber (Coleoptera, Curculionoidea)". Studies on fossils in amber, with particular reference to the Cretaceous of New Jersey. Backhuys, Leiden. pp. 241–254.
  22. Gusarov, V.I. (2000). "Mesotachyporus puer, a new genus and species of Cretaceous Tachyporinae (Coleoptera: Staphylinidae) from New Jersey amber". Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey. Backhuys, Leiden. pp. 255–258.
  23. Chatzimanolis, S.; Newton, A.F.; Soriano, C.; Engel, M.S. (2013). "Remarkable Stasis in a Phloeocharine Rove Beetle from the Late Cretaceous of New Jersey (Coleoptera, Staphylinidae)". Journal of Paleontology. 87 (2): 177–182. doi:10.1666/12-114.1.
  24. Borkent, A. (1996). "Biting Midges from Upper Cretaceous New Jersey Amber (Diptera: Ceratopogonidae)". American Museum Novitates. 3159: 1–13.
  25. Grimaldi, D.A.; Cumming, J.M. (1999). "Brachyceran Diptera in Cretaceous ambers and Mesozoic diversification of the Eremoneura" (PDF). Bulletin of the American Museum of Natural History (239): 1–124. Archived from the original (PDF) on 2008-12-04.
  26. Currie, D.C.; Grimaldi, D.A. (2000). "A new black fly (Diptera: Simuliidae) genus from mid Cretaceous (Turonian) amber of New Jersey". In Grimaldi, D.A. (ed.). Studies on fossils in amber, with particular reference to the Cretaceous of New Jersey. Leiden: Backhuys publishers. pp. 473–485.
  27. Gelhaus, J.K.; Johnson, R. (1996). "First record of crane flies (Tipulidae: Limoniinae) in Upper Cretaceous amber from New Jersey, U.S.A.". Transactions of the American Entomological Society. 122 (1): 55–65.
  28. Dikow, T.; Grimaldi, D.A. (2014). "Robber flies in Cretaceous ambers (Insecta: Diptera: Asilidae)" (PDF). American Museum Novitates. 3799 (3799): 1–19. doi:10.1206/3799.1. hdl:2246/6522.
  29. Grogan, W.L.; Szadziewski, R. (1988). "A new biting midge from Upper Cretaceous (Cenomanian) amber of New Jersey (Diptera: Ceratopogonidae)". Journal of Paleontology. 62 (5): 808–812. doi:10.1017/s0022336000019089.
  30. Borkent, A. "Further biting midges (Diptera: Ceratopogonidae) from Upper Cretaceous New Jersey amber". In Grimaldi, D.A. (ed.). Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey. Backhuys, Leiden. pp. 453–472.
  31. Blagoderov, V.A.; Grimaldi, D.A. (2004). "Fossil Sciaroidea (Diptera) in Cretaceous ambers, exclusive of Cecidomyiidae, Sciaridae, and Keroplatidae" (PDF). American Museum Novitates. 3433: 1–76. doi:10.1206/0003-0082(2004)433<0001:fsdica>2.0.co;2. hdl:2246/2798.
  32. Szadziewski, R.; Arillo, A.; Urbanek, A.; Sontag, E. (2016). "Biting midges of the extinct genus Protoculicoides Boesel from Lower Cretaceous amber of San Just, Spain and new synonymy in recently described fossil genera (Diptera: Ceratopogonidae)". Cretaceous Research. 58: 1–9. doi:10.1016/j.cretres.2015.09.016.
  33. Azar, D.; Salamé, Y. (2015). "A new genus of Sycoracinae (Diptera: Psychodidae) from Upper Cretaceous amber of New Jersey". Cretaceous Research. 52, Part B: 539–547. doi:10.1016/j.cretres.2014.05.002.
  34. Azar, D.; Mouawad, R.; Salamé, Y. (2015). "A new genus of Trichomyiinae (Diptera: Psychodidae) from Upper Cretaceous amber of New Jersey". Cretaceous Research. 52, Part B: 531–538. doi:10.1016/j.cretres.2014.02.014.
  35. Sinitshenkova, N. D. "New Jersey amber mayflies: the first North American Mesozoic members of the order (Insecta; Ephemeroptera)". In Grimaldi, D.A. (ed.). Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey. Backhuys, Leiden. pp. 111–125.
  36. Peters, W.L.; Peters, J.G. (2000). Grimaldi, D.A. (ed.). Discovery of a new genus of Leptophlebiidae: Leptophlebiinae (Ephemeroptera) in Cretaceous amber from New Jersey. Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey. Backhuys, Leiden. pp. 127–131.
  37. Vea, I.M.; Grimaldi, D.A. (2015). "Diverse New Scale Insects (Hemiptera: Coccoidea) in Amber from the Cretaceous and Eocene with a Phylogenetic Framework for Fossil Coccoidea". American Museum Novitates. 3823 (3823): 1–80. doi:10.1206/3823.1. hdl:2246/6575.
  38. Wegierek, P. (2000). "A new genus and species of aphid (Hemiptera: Aphidinea) from New Jersey amber". In Grimaldi, D.A. (ed.). Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey. Backhuys, Leiden. pp. 141–145.
  39. Ouvrard, D.; Burckhardt, D.; Azar, D.; Grimaldi, D (2010). "Non‐jumping plant‐lice in Cretaceous amber (Hemiptera: Sternorrhyncha: Psylloidea)". Systematic Entomology. 35 (1): 172–180. doi:10.1111/j.1365-3113.2009.00499.x.
  40. Shcherbakov, D.E. (2007). "An extraordinary new family of Cretaceous planthoppers (Homoptera: Fulgoroidea)". Russian Entomological Journal. 16 (2): 138–154.
  41. Grimaldi, D.A. (2003). "First amber fossils of the extinct family Protopsyllidiidae, and their phylogenetic significance among Hemiptera". Insect Systematics & Evolution. 34 (3): 329–344. doi:10.1163/187631203788964746.
  42. Golub, V.B.; Popov, Y.A. (2003). "The new fossil genus of Vianaididae (Heteroptera: Tingoidea) from the Cretaceous amber of New Jersey; evolution of the family in the Late Cretaceous". Acta Zoologica Cracoviensia. 46 (Supplementary): 109–116.
  43. Engel, M.S.; Grimaldi, D. A. (2007). "New false fairy wasps in Cretaceous amber from New Jersey and Myanmar (Hymenoptera: Mymarommatoidea)". Transactions of the Kansas Academy of Science. 110 (3 & 4): 159–168. doi:10.1660/0022-8443(2007)110[159:NFFWIC]2.0.CO;2.
  44. Engel, M.S.; Grimaldi, D.A. (2007). "Cretaceous Scolebythidae and phylogeny of the family (Hymenoptera: Chrysidoidea)" (PDF). American Museum Novitates. 3568: 1–16. CiteSeerX 10.1.1.564.999. doi:10.1206/0003-0082(2007)475[1:csapot]2.0.co;2. hdl:2246/5859.
  45. Engel, M.S. (2000). "A new interpretation of the oldest fossil bee (Hymenoptera: Apidae)". American Museum Novitates. 3296: 1–11. CiteSeerX 10.1.1.165.2484. doi:10.1206/0003-0082(2000)3296<0001:anioto>2.0.co;2.
  46. Engel, M.S. (2013). "A new genus and species of Baissidae in Late Cretaceous amber from New Jersey (Hymenoptera: Evanioidea)". Novitates Paleoentomologicae. 3: 1–8.
  47. Engel, M.S.; Grimaldi, D.A. (2009). "Diversity and phylogeny of the Mesozoic wasp family Stigmaphronidae (Hymenoptera: Ceraphronoidea)" (PDF). Denisia. 26: 53–68.
  48. Basibuyuk, H.H.; Fitton, M.G.; Rasnitsyn, A.P.; Quicke, D.L.J. (2000). "Two new genera of the Evaniidae (Insecta: Hymenoptera) from Late Cretaceous New Jersey amber". In Grimaldi, D.A. (ed.). Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey. Backhuys, Leiden. pp. 313–325.
  49. Engel, M.S.; Grimaldi, D.A. (2006). "A diminutive pelecinid wasp in Cretaceous amber from New Jersey (Hymenoptera: Pelecinidae)". Northeastern Naturalist. 13 (2): 291–297. doi:10.1656/1092-6194(2006)13[291:adpwic]2.0.co;2.
  50. Brothers, Denis J. (2011). "A new Late Cretaceous family of Hymenoptera, and phylogeny of the Plumariidae and Chrysidoidea (Aculeata)" (PDF). ZooKeys (130): 515–542. doi:10.3897/zookeys.130.1591. PMC 3260779. PMID 22259297.
  51. Basibuyuk, H.H.; Rasnitsyn, A.P.; Achterberg, C.van; Fitton, M.G.; Quicke, D.L.J. (1999). "A new, putatively primitive Cretaceous fossil braconid subfamily from New Jersey amber (Hymenoptera, Braconidae)". Zoologica Scripta. 28 (1–2): 211–214. doi:10.1046/j.1463-6409.1999.00006.x.
  52. Engel, M.S.; Ortega-Blanco, J.; Soriano, C.; Grimaldi, D.A.; Martinez-Delclos, X. (2013). "A New Lineage of Enigmatic Diaprioid Wasps in Cretaceous Amber (Hymenoptera: Diaprioidea)". American Museum Novitates. 3771 (3771): 1–23. doi:10.1206/3771.2. hdl:2246/6423.
  53. Grimaldi, D.; Agosti, D. (2000). "A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants". Proceedings of the National Academy of Sciences. 97 (25): 13678–13683. Bibcode:2000PNAS...9713678G. doi:10.1073/pnas.240452097. PMC 17635. PMID 11078527.
  54. Grimaldi, D.A. (2003). "A Revision of Cretaceous Mantises and Their Relationships, Including New Taxa (Insecta: Dictyoptera: Mantodea)". American Museum Novitates. 3412: 1–47. doi:10.1206/0003-0082(2003)412<0001:arocma>2.0.co;2. hdl:2246/2838.
  55. Liu, X; Lu, X; Zhang, W. (2017). "New genera and species of the family Dipteromantispidae (Insecta: Neuroptera) from the Cretaceous amber of Myanmar and New Jersey". Cretaceous Research. 72: 18–25. doi:10.1016/j.cretres.2016.12.007.
  56. Nel, A; Perrichot, V.; Azar, D.; Néraudeau, D. (2005). "New Rhachiberothidae (Insecta: Neuroptera) in early cretaceous and early Eocene ambers from France and Lebanon". Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen. 235 (1): 51–85.
  57. Azar, D.; Nel, A.; Petrulevicius, J.F. (2010). "First Psocodean (Psocodea, Empheriidae) from the Cretaceous Amber of New Jersey". Acta Geologica Sinica. English Edition. 84 (4): 762–767. doi:10.1111/j.1755-6724.2010.00255.x.
  58. Engel, M.S. (2002). "The smallest snakefly (Raphidioptera: Mesoraphidiidae): A new species in Cretaceous amber from Myanmar, with a catalog of fossil snakeflies". American Museum Novitates. 3363: 1–22. doi:10.1206/0003-0082(2002)363<0001:TSSRMA>2.0.CO;2. hdl:2246/2852.
  59. Botosaneanu, L. (1995). "Caddis flies (Trichoptera) from Turonian (Upper Cretaceous) amber of New Jersey". American Museum Novitates. 3140: 1–7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.