Near-horizon metric

The near-horizon metric (NHM) refers to the near-horizon limit of the global metric of a black hole. NHMs play an important role in studying the geometry and topology of black holes, but are only well defined for extremal black holes.[1][2][3] NHMs are expressed in Gaussian null coordinates, and one important property is that the dependence on the coordinate is fixed in the near-horizon limit.

NHM of extremal Reissner–Nordström black holes

The metric of extremal Reissner–Nordström black hole is

Taking the near-horizon limit

and then omitting the tildes, one obtains the near-horizon metric

NHM of extremal Kerr black holes

The metric of extremal Kerr black hole () in Boyer–Lindquist coordinates can be written in the following two enlightening forms,[4][5]

where

Taking the near-horizon limit[6][7]

and omitting the tildes, one obtains the near-horizon metric (this is also called extremal Kerr throat[6] )

NHM of extremal Kerr–Newman black holes

Extremal Kerr–Newman black holes () are described by the metric[4][5]

where

Taking the near-horizon transformation

and omitting the tildes, one obtains the NHM[7]

NHMs of generic black holes

In addition to the NHMs of extremal Kerr–Newman family metrics discussed above, all stationary NHMs could be written in the form[1][2][3][8]


where the metric functions are independent of the coordinate r, denotes the intrinsic metric of the horizon, and are isothermal coordinates on the horizon.

Remark: In Gaussian null coordinates, the black hole horizon corresponds to .

gollark: Intel TDPs are nigh-meaningless.
gollark: Even the 10nm Ice Lake stuff was bad.
gollark: They have a worse architecture and process and compensate by driving clocks way up.
gollark: Not really!
gollark: (not caught up entirely yet, yes)

See also

References

  1. Kunduri, Hari K.; Lucietti, James (2009). "A classification of near-horizon geometries of extremal vacuum black holes". Journal of Mathematical Physics. AIP Publishing. 50 (8): 082502. arXiv:0806.2051. doi:10.1063/1.3190480. ISSN 0022-2488.
  2. Kunduri, Hari K; Lucietti, James (2009-11-25). "Static near-horizon geometries in five dimensions". Classical and Quantum Gravity. IOP Publishing. 26 (24): 245010. arXiv:0907.0410. doi:10.1088/0264-9381/26/24/245010. ISSN 0264-9381.
  3. Kunduri, Hari K (2011-05-20). "Electrovacuum near-horizon geometries in four and five dimensions". Classical and Quantum Gravity. IOP Publishing. 28 (11): 114010. arXiv:1104.5072. doi:10.1088/0264-9381/28/11/114010. ISSN 0264-9381.
  4. Hobson, Michael Paul; Efstathiou, George; Lasenby., Anthony N (2006). General relativity : an introduction for physicists. Cambridge, UK New York: Cambridge University Press. ISBN 978-0-521-82951-9. OCLC 61757089.
  5. Frolov, Valeri P; Novikov, Igor D (1998). Black hole physics : basic concepts and new developments. Dordrecht Boston: Kluwer. ISBN 978-0-7923-5145-0. OCLC 39189783.
  6. Bardeen, James; Horowitz, Gary T. (1999-10-26). "Extreme Kerr throat geometry: A vacuum analog of AdS2×S2". Physical Review D. American Physical Society (APS). 60 (10): 104030. arXiv:hep-th/9905099. doi:10.1103/physrevd.60.104030. ISSN 0556-2821.
  7. Amsel, Aaron J.; Horowitz, Gary T.; Marolf, Donald; Roberts, Matthew M. (2010-01-22). "Uniqueness of extremal Kerr and Kerr-Newman black holes". Physical Review D. American Physical Society (APS). 81 (2): 024033. arXiv:0906.2367. doi:10.1103/physrevd.81.024033. ISSN 1550-7998.
  8. Compère, Geoffrey (2012-10-22). "The Kerr/CFT Correspondence and its Extensions". Living Reviews in Relativity. Springer Science and Business Media LLC. 15 (1): 11. arXiv:1203.3561. doi:10.12942/lrr-2012-11. ISSN 2367-3613.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.