n conjecture

In number theory the n conjecture is a conjecture stated by Browkin & Brzeziński (1994) as a generalization of the abc conjecture to more than three integers.

Formulations

Given , let satisfy three conditions:

(i)
(ii)
(iii) no proper subsum of equals

First formulation

The n conjecture states that for every , there is a constant , depending on and , such that:

where denotes the radical of the integer , defined as the product of the distinct prime factors of .

Second formulation

Define the quality of as

The n conjecture states that .

Stronger form

Vojta (1998) proposed a stronger variant of the n conjecture, where setwise coprimeness of is replaced by pairwise coprimeness of .

There are two different formulations of this strong n conjecture.

Given , let satisfy three conditions:

(i) are pairwise coprime
(ii)
(iii) no proper subsum of equals

First formulation

The strong n conjecture states that for every , there is a constant , depending on and , such that:

Second formulation

Define the quality of as

The strong n conjecture states that .

gollark: Which pagan gods?
gollark: oh no
gollark: * LOL out loud
gollark: Hmm, that sounds useful.
gollark: It would really have made more sense for them to design the whole thing in a sane way in the first place.

References

  • Browkin, Jerzy; Brzeziński, Juliusz (1994). "Some remarks on the abc-conjecture". Math. Comp. 62 (206): 931–939. doi:10.2307/2153551. JSTOR 2153551.
  • Vojta, Paul (1998). "A more general abc conjecture". arXiv:math/9806171. Cite journal requires |journal= (help)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.