Minimal ideal

In the branch of abstract algebra known as ring theory, a minimal right ideal of a ring R is a nonzero right ideal which contains no other nonzero right ideal. Likewise, a minimal left ideal is a nonzero left ideal of R containing no other nonzero left ideals of R, and a minimal ideal of R is a nonzero ideal containing no other nonzero two-sided ideal of R. (Isaacs 2009, p. 190)

In other words, minimal right ideals are minimal elements of the poset of nonzero right ideals of R ordered by inclusion. The reader is cautioned that outside of this context, some posets of ideals may admit the zero ideal, and so the zero ideal could potentially be a minimal element in that poset. This is the case for the poset of prime ideals of a ring, which may include the zero ideal as a minimal prime ideal.

Definition

The definition of a minimal right ideal N of a ring R is equivalent to the following conditions:

  • N is nonzero and if K is a right ideal of R with {0} ⊆ KN, then either K = {0} or K = N.
  • N is a simple right R-module.

Minimal right ideals are the dual notion to maximal right ideals.

Properties

Many standard facts on minimal ideals can be found in standard texts such as (Anderson & Fuller 1992), (Isaacs 2009), (Lam 2001), and (Lam 1999).

  • In a ring with unity, maximal right ideals always exist. In contrast, minimal right, left, or two-sided ideals in a ring with unity need not exist.
  • The right socle of a ring is an important structure defined in terms of the minimal right ideals of R.
  • Rings for which every right ideal contains a minimal right ideal are exactly the rings with an essential right socle.
  • Any right Artinian ring or right Kasch ring has a minimal right ideal.
  • Domains that are not division rings have no minimal right ideals.
  • In rings with unity, minimal right ideals are necessarily principal right ideals, because for any nonzero x in a minimal right ideal N, the set xR is a nonzero right ideal of R inside N, and so xR = N.
  • Brauer's lemma: Any minimal right ideal N in a ring R satisfies N2 = {0} or N = eR for some idempotent element e of R. (Lam 2001, p. 162)
  • If N1 and N2 are nonisomorphic minimal right ideals of R, then the product N1N2 equals {0}.
  • If N1 and N2 are distinct minimal ideals of a ring R, then N1N2 = {0}.
  • A simple ring with a minimal right ideal is a semisimple ring.
  • In a semiprime ring, there exists a minimal right ideal if and only if there exists a minimal left ideal. (Lam 2001, p. 174)

Generalization

A nonzero submodule N of a right module M is called a minimal submodule if it contains no other nonzero submodules of M. Equivalently, N is a nonzero submodule of M which is a simple module. This can also be extended to bimodules by calling a nonzero sub-bimodule N a minimal sub-bimodule of M if N contains no other nonzero sub-bimodules.

If the module M is taken to be the right R-module RR, then clearly the minimal submodules are exactly the minimal right ideals of R. Likewise, the minimal left ideals of R are precisely the minimal submodules of the left module RR. In the case of two-sided ideals, we see that the minimal ideals of R are exactly the minimal sub-bimodules of the bimodule RRR.

Just as with rings, there is no guarantee that minimal submodules exist in a module. Minimal submodules can be used to define the socle of a module.

gollark: Well, it's mildly more annoying to type.
gollark: You could probably just use triple backticks or U+0000 (null, \0, whatever).
gollark: Idea: name an esolang something which is unrepresentable as a wiki page title, Discord message or spoken out loud.
gollark: Zstd 1.1.3 contains a multi-threaded compression API that allows a compression operation to leverage multiple threads. The output from this API is compatible with the Zstandard frame format and doesn't require any special handling on the decompression side. In other words, a compressor can switch to the multi-threaded API and decompressors won't care.
gollark: ???

References

    • Anderson, Frank W.; Fuller, Kent R. (1992), Rings and categories of modules, Graduate Texts in Mathematics, 13 (2 ed.), New York: Springer-Verlag, pp. x+376, ISBN 0-387-97845-3, MR 1245487
    • Isaacs, I. Martin (2009) [1994], Algebra: a graduate course, Graduate Studies in Mathematics, 100, Providence, RI: American Mathematical Society, pp. xii+516, ISBN 978-0-8218-4799-2, MR 2472787
    • Lam, Tsit-Yuen (1999), Lectures on modules and rings, Graduate Texts in Mathematics No. 189, Berlin, New York: Springer-Verlag, ISBN 978-0-387-98428-5, MR 1653294
    • Lam, T. Y. (2001), A first course in noncommutative rings, Graduate Texts in Mathematics, 131 (2 ed.), New York: Springer-Verlag, pp. xx+385, ISBN 0-387-95183-0, MR 1838439
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.