Milnor–Wood inequality

In mathematics, more specifically in differential geometry and geometric topology, the Milnor–Wood inequality is an obstruction to endow circle bundles over surfaces with a flat structure. It is named after John Milnor and John W. Wood.

Flat bundles

For linear bundles, flatness is defined as the vanishing of the curvature form of an associated connection. An arbitrary smooth (or topological) d-dimensional fiber bundle is flat if it can be endowed with a foliation of codimension d that is transverse to the fibers.

The inequality

The Milnor–Wood inequality is named after two separate results that were proven by John Milnor and John W. Wood. Both of them deal with orientable circle bundles over a closed oriented surface of positive genus g.

Theorem (Milnor, 1958)[1] Let be a flat oriented linear circle bundle. Then the Euler number of the bundle satisfies .

Theorem (Wood, 1971)[2] Let be a flat oriented topological circle bundle. Then the Euler number of the bundle satisfies .

Wood's theorem implies Milnor's older result, as the homomorphism classifying the linear flat circle bundle gives rise to a topological circle bundle via the 2-fold covering map , doubling the Euler number.

Either of these two statements can be meant by referring to the Milnor–Wood inequality.

gollark: Just turn down vinyl's volume.
gollark: ↑ none are safe
gollark: <@!683735247489466397> play https://radio-ic.osmarks.net/128k.ogg
gollark: Now to wait while my website compiles.
gollark: Why does it keep *doing* that?

References

  1. J. Milnor. "On the existence of a connection of curvature zero". Comm. Math. Helv. 21 (1958): 215–223.
  2. J. Wood. "Bundles with totally disconnected structure group" (PDF). Comm. Math. Helv. 46 (1971): 257–273. doi:10.1007/BF02566843.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.