Microwave volumetric heating

Microwave Volumetric Heating (MVH) is a method of using microwaves to evenly heat the entire volume of a flowing liquid, suspension or semi-solid.[1] The process is known as MVH because the microwaves penetrate uniformly throughout the volume of the product being heated, thus delivering energy evenly into the body of the material.

This is in contrast to traditional thermal processing, which relies on conduction and convection from hot surfaces to deliver energy into the product. Liquids, suspensions, or semi-solids heated by MVH do not come into contact with hot surfaces; this minimizes thermal damage to functional components, and allows thick and viscous products to be heated without fouling.[2]

Processing temperatures can be very accurately controlled by varying the flow rate of the product through the MVH treatment chamber. The slower the flow, the higher the final product temperature. Flowing liquids move continuously through a unique treatment chamber, thereby heating the product.[3]

Thermal processing using microwaves

The FDA accepts that microwaves can be used to heat food for commercial use, pasteurization and sterilization.[4] The main mechanism of microbial inactivation by microwaves is due to thermal effect; the phenomenon of lethality due to 'non-thermal effect' is controversial, and the mechanisms suggested include selective heating of micro-organisms, electroporation, cell membrane rupture, and cell lysis due to electromagnetic energy coupling.

Because microwaves transfer electromagnetic energy at a molecular level, and the vibration of the molecules creates heat through friction, it is difficult to properly check for this highly localized 'micro'-thermal effect or create conditions where study of the putative 'athermal' effect is possible.[5]

Processes MVH apply

gollark: And yet I SOMEWHAT COULD™ using a wikipedia article?
gollark: In C#.
gollark: If you want more, YOU are to write it.
gollark: As you can see, centre-justification follows from the combination of left- and right-justification.
gollark: Left-justification:> Left-wing politics supports social equality and egalitarianism, often in critique of social hierarchy.[1][2][3][4] Left-wing politics typically involves a concern for those in society whom its adherents perceive as disadvantaged relative to others as well as a belief that there are unjustified inequalities that need to be reduced or abolished.[1] According to emeritus professor of economics Barry Clark, left-wing supporters "claim that human development flourishes when individuals engage in cooperative, mutually respectful relations that can thrive only when excessive differences in status, power, and wealth are eliminated."[5] No language (except esoteric apioforms) *truly* lacks generics. Typically, they have generics, but limited to a few "blessed" built-in data types; in C, arrays and pointers; in Go, maps, slices and channels. This of course creates vast inequality between the built-in types and the compiler writers and the average programmers with their user-defined data types, which cannot be generic. Typically, users of the language are forced to either manually monomorphise, or use type-unsafe approaches such as `void*`. Both merely perpetuate an unjust system which must be abolished.

References

  1. Technology Strategy Board. 2012. https://connect.innovateuk.org/documents/3285671/6079410/making+waves+in+food.pdf/42a693dc-c677-43ae-a470-908615ef3885. making waves in food. Archived 2016-03-05 at the Wayback Machine
  2. Queen Margaret University. 2012. http://www.qmu.ac.uk/marketing/press_releases/microwave_technology.htm. experts revolutionise global food processing.
  3. Interface Scotland. 2012. http://www.interface-online.org.uk/case-studies/advanced-microwave-technologies-ltd. Advanced Microwave Technologies.
  4. U.S. Food and Drug Administration. 2012. https://www.fda.gov/Food/FoodScienceResearch/SafePracticesforFoodProcesses/ucm100250.htm. Kinetics of microbial inactivation for alternative food processing technologies – Microwave and radio frequency processing.
  5. Shamis (October 2012). "Review of the specific effects of microwave radiation on bacterial cells". Applied Microbiology and Biotechnology. 96 (2): 319–25. doi:10.1007/s00253-012-4339-y. PMID 22875401.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.