Microarray

A microarray is a multiplex lab-on-a-chip. It is a two-dimensional array on a solid substrate—usually a glass slide or silicon thin-film cell—that assays (tests) large amounts of biological material using high-throughput screening miniaturized, multiplexed and parallel processing and detection methods. The concept and methodology of microarrays was first introduced and illustrated in antibody microarrays (also referred to as antibody matrix) by Tse Wen Chang in 1983 in a scientific publication[1] and a series of patents.[2] The "gene chip" industry started to grow significantly after the 1995 Science Paper by the Ron Davis and Pat Brown labs at Stanford University.[3] With the establishment of companies, such as Affymetrix, Agilent, Applied Microarrays, Arrayjet, Illumina, and others, the technology of DNA microarrays has become the most sophisticated and the most widely used, while the use of protein, peptide and carbohydrate microarrays[4] is expanding.

A Venn diagram outlining and contrasting some aspects of the fields of bio-MEMS, lab-on-a-chip, μTAS.

Types of microarrays include:

People in the field of CMOS biotechnology are developing new kinds of microarrays. Once fed magnetic nanoparticles, individual cells can be moved independently and simultaneously on a microarray of magnetic coils. A microarray of nuclear magnetic resonance microcoils is under development.[5]

Fabrication and operation of microarrays

A large number of technologies underlie the microarray platform, including the material substrates,[6] spotting of biomolecular arrays,[7] and the microfluidic packaging of the arrays.[8]

gollark: I used to have to, but now I have sufficient RAM.
gollark: I read *some* of them, but they could stick malicious stuff into the source or makefile and I'd not notice.
gollark: I just download everything from the AUR.
gollark: I think you can run Linux on them nowadays, but I don't know if you get things like "functional GPUs".
gollark: I mean, on the one hand Apple's CPUs have excellent performance-per-watt, but on the other hand you are buying into what's sort of kind of a highly closed platform.

See also

Notes

  1. Tse-Wen Chang, TW (1983). "Binding of cells to matrixes of distinct antibodies coated on solid surface". Journal of Immunological Methods. 65 (1–2): 217–23. doi:10.1016/0022-1759(83)90318-6. PMID 6606681.
  2. https://www.google.com/patents/US4591570; http://www.google.com/patents/US4829010; http://www.google.com/patents/US5100777.%5B%5D
  3. Schena, M.; Shalon, D.; Davis, R. W.; Brown, P. O. (1995). "Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray". Science. 270 (5235): 467–70. doi:10.1126/science.270.5235.467. PMID 7569999.
  4. Wang, D; Carroll, GT; Turro, NJ; Koberstein, JT; Kovác, P; Saksena, R; Adamo, R; Herzenberg, LA; Herzenberg, LA; Steinman, L (2007). "Photogenerated glycan arrays identify immunogenic sugar moieties of Bacillus anthracis exosporium". Proteomics. 7 (2): 180–184. doi:10.1002/pmic.200600478. PMID 17205603.
  5. Ham, Donhee; Westervelt, Robert M. (2007). "The silicon that Moves and Feels Small Living Things". IEEE Solid-State Circuits Newsletter. 12 (4): 4–9. doi:10.1109/N-SSC.2007.4785650.
  6. Guo, W; Vilaplana, L; Hansson, J; Marco, P; van der Wijngaart, W (2020). "Immunoassays on thiol-ene synthetic paper generate a superior fluorescence signal". Biosensors and Bioelectronics. doi:10.1016/j.bios.2020.112279.
  7. Barbulovic-Nad; et al. (2008). "Bio-Microarray Fabrication Techniques—A Review". Critical Reviews in Biotechnology. 26 (4): 237–259. CiteSeerX 10.1.1.661.6833. doi:10.1080/07388550600978358. PMID 17095434.
  8. Zhou; et al. (2017). "Thiol–ene–epoxy thermoset for low-temperature bonding to biofunctionalized microarray surfaces". Lab Chip. 17 (21): 3672–3681. doi:10.1039/C7LC00652G.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.