Marr–Hildreth algorithm

In computer vision, the Marr–Hildreth algorithm is a method of detecting edges in digital images, that is, continuous curves where there are strong and rapid variations in image brightness. The Marr–Hildreth edge detection method is simple and operates by convolving the image with the Laplacian of the Gaussian function, or, as a fast approximation by difference of Gaussians. Then, zero crossings are detected in the filtered result to obtain the edges. The Laplacian-of-Gaussian image operator is sometimes also referred to as the Mexican hat wavelet due to its visual shape when turned upside-down. David Marr and Ellen C. Hildreth are two of the inventors.[1]

Limitations

The Marr–Hildreth operator, however, suffers from two main limitations. It generates responses that do not correspond to edges, so-called "false edges", and the localization error may be severe at curved edges. Today, there are much better edge detection methods, such as the Canny edge detector based on the search for local directional maxima in the gradient magnitude, or the differential approach based on the search for zero crossings of the differential expression that corresponds to the second-order derivative in the gradient direction (Both of these operations preceded by a Gaussian smoothing step.) For more details, see the article on Edge detection.

gollark: Good* reasons. And I'm aware of better codecs, but actually reencoding it would burn my CPU.
gollark: Anyone know about video file meddling? I want to upload a 10 hour loop of a 13 second video to YouTube, but just concatenating it 2770 times with `ffmpeg` produced a 3GB file before I ran out of /tmp space, so can I just edit the headers somehow to make stuff *play* it as if it's 10 hours?
gollark: It's a shame the only disc-playing things I have around are a DVD drive I might possibly maybe need eventually and an old CD player.
gollark: https://www.arduino.cc/reference/en/language/variables/data-types/int/
gollark: Not on arduinos according to a random result I duckduckgoed.

See also

References

  1. Umbaugh, Scott E (2010). Digital image processing and analysis : human and computer vision applications with CVIPtools (2nd ed.). Boca Raton, Florida: CRC Press. ISBN 978-1-4398-0205-2.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.