Marinisation

Marinisation (also marinization) is design, redesign, or testing of products for use in a marine environment. Most commonly, it refers to use and long-term survival in harsh, highly corrosion salt water conditions. Marinisation is done by many manufacturing industries worldwide including many military organisations, especially navies.

In some instances, cost is not a guiding force, and items may be designed from scratch with entirely non-corrosive components engineered and assembled to resist the effects of vibration and constantly changing attitude. In others, particularly in "marinising" an existing product that was not designed specifically for a marine environment for sale in the public marketplace, a balance must be found between the competing criteria.

There are three main factors that need to be considered for a product to be truly marinised.

  • Resistance to corrosion
  • Resistance to vibration
  • Ability to function properly in conditions of constantly changing attitude (an object's orientation about its center of gravity)

Examples

Metals

Marinised metals include some of the following:

The adjectival phrase "marine grade" being used when the above alloys have all impurities removed and are suitable for exposure to a marine environment.
  • Metals electroplated or dipped in a corrosion-resistant material, e.g. galvanised steel
  • Metals painted with special anti rust or anti corrosion coatings
  • Plastic coated metals

Electronics

Marinised electronics use one or more of the following protection methods. In most cases more than one method is used:

  • Coating by a spray or dipping to protect from salt air and water
  • Full encapsulation in some form of resin or gel
  • Specialised mounting of internal parts for vibration protection
  • Use of specialised corrosion resistant solder and corrosion resistant metals

Batteries

Marinised batteries are usually gel batteries or sealed maintenance-free batteries. Not using marinised batteries in salt water can be deadly in an enclosed environment for many reasons:

  1. Sulfuric acid and salt water react to generate dangerous hydrogen chloride gas, necessitating the use of valve-regulated maintenance-free sealed batteries.
  2. The battery must have stronger plates and separators to withstand constant vibrations and impacts caused by large waves striking the hull. Plate collapse can cause short-circuits and electrical fires or explosions.
  3. A marine battery must function at any angle due to the changing attitude of the vessel it is mounted in. Gel VRLA batteries are best for this purpose.
gollark: What if they navigate the SSL webscale node? Or activate an open-source HTTP platform?
gollark: You can use proof of stake, which is somewhat terrible, or proof of my private key signed this, which probably breaks a lot of the incentives but who cares.
gollark: It's not like you have to use proof of work.
gollark: ???
gollark: https://lhartikk.github.io/

See also


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.