Loop (graph theory)

In graph theory, a loop (also called a self-loop or a "buckle") is an edge that connects a vertex to itself. A simple graph contains no loops.

A graph with a loop on vertex 1

Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing multiple edges between the same vertices):

  • Where graphs are defined so as to allow loops and multiple edges, a graph without loops or multiple edges is often distinguished from other graphs by calling it a "simple graph".
  • Where graphs are defined so as to disallow loops and multiple edges, a graph that does have loops or multiple edges is often distinguished from the graphs that satisfy these constraints by calling it a "multigraph" or "pseudograph".

In a graph with one vertex, all edges must be loops. Such a graph is called a bouquet.

Degree

For an undirected graph, the degree of a vertex is equal to the number of adjacent vertices.

A special case is a loop, which adds two to the degree. This can be understood by letting each connection of the loop edge count as its own adjacent vertex. In other words, a vertex with a loop "sees" itself as an adjacent vertex from both ends of the edge thus adding two, not one, to the degree.

For a directed graph, a loop adds one to the in degree and one to the out degree.

gollark: So... why cast to a player?
gollark: Does radiation not apply to mobs, then?
gollark: Java *encourages* the madness, though.
gollark: ArmorOrSomething.getEntityWearingIt().waitIsThisAPlayer().getPlayerOrSomething().javaIsStupid()
gollark: According to my calculations, it's something for blocking radiation in an area.

See also

Loops in Graph Theory

Loops in Topology

References

    • Balakrishnan, V. K.; Graph Theory, McGraw-Hill; 1 edition (February 1, 1997). ISBN 0-07-005489-4.
    • Bollobás, Béla; Modern Graph Theory, Springer; 1st edition (August 12, 2002). ISBN 0-387-98488-7.
    • Diestel, Reinhard; Graph Theory, Springer; 2nd edition (February 18, 2000). ISBN 0-387-98976-5.
    • Gross, Jonathon L, and Yellen, Jay; Graph Theory and Its Applications, CRC Press (December 30, 1998). ISBN 0-8493-3982-0.
    • Gross, Jonathon L, and Yellen, Jay; (eds); Handbook of Graph Theory. CRC (December 29, 2003). ISBN 1-58488-090-2.
    • Zwillinger, Daniel; CRC Standard Mathematical Tables and Formulae, Chapman & Hall/CRC; 31st edition (November 27, 2002). ISBN 1-58488-291-3.
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.