Locally catenative sequence
In mathematics, a locally catenative sequence is a sequence of words in which each word can be constructed as the concatenation of previous words in the sequence.[1]
Formally, an infinite sequence of words w(n) is locally catenative if, for some positive integers k and i1,...ik:
Some authors use a slightly different definition in which encodings of previous words are allowed in the concatenation.[2]
Examples
The sequence of Fibonacci words S(n) is locally catenative because
The sequence of Thue–Morse words T(n) is not locally catenative by the first definition. However, it is locally catenative by the second definition because
where the encoding μ replaces 0 with 1 and 1 with 0.
gollark: C enforces some over plain asm, for example.
gollark: A language which HELPS enforce some invariants is very good for making your code less buggy.
gollark: Safe/bugless, I mean.
gollark: NOBODY can write entirely safe code.
gollark: That was jöke.
References
- Rozenberg, Grzegorz; Salomaa, Arto (1997). Handbook of Formal Languages. Springer. p. 262. ISBN 3-540-60420-0.
- Allouche, Jean-Paul; Shallit, Jeffrey (2003). Automatic Sequences. Cambridge. p. 237. ISBN 0-521-82332-3.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.