Load dump

Load dump means the disconnection of a powered load. It can cause 2 problems:

  • failure of supply to equipment or customers
  • large voltage spikes from the inductive generator(s)

In automotive electronics, it refers to the disconnection of the vehicle battery from the alternator while the battery is being charged. Due to such a disconnection of the battery, other loads connected to the alternator see a surge in power line. The peak voltage of this surge may be as high as 120 V and the surge may take up to 400 ms to decay. It is typically clamped to 40 V in 12 V vehicles and about 60 V in 24 V systems.

Overview

The windings of an alternator have a large inductance. When the vehicle battery is being charged, the alternator supplies it with a large current, the magnitude of which is controlled by the current in the field winding. If the battery becomes disconnected while it is being charged the alternator load suddenly decreases. However the alternator's regulator cannot quickly cause the field current to decrease sufficiently, so the alternator continues to generate a large current. This large current causes the voltage on the vehicle bus to increase significantly -- well above the normal and regulated level.

All the loads connected to the alternator see this high voltage spike. The strength of the spike depends on many factors including the speed at which the alternator is rotating and the current which was being supplied to the battery before it was disconnected. These spike may peak at as high as 120 V and may take up to 400 ms to decay.[1] This kind of a spike would damage many semiconductor devices, e.g. ECUs, that may be connected to the alternator. Special protection devices, such as TVS diodes, varistors which can withstand and absorb the energy of these spikes may be added to protect such semiconductor devices.

Various automotive standards such as ISO 7637-2 and SAE J1113-11 specify a standard shape of the load dump pulse against which automotive electronic components may be designed.

There can also be a smaller inductive spike due to the inductance of the stator windings. That may have a larger voltage, but it will be for a much shorter duration, as relatively little energy is stored in the inductance of these windings. Load dump can be more damaging because the alternator continues to generate power until the field current can decrease, so much more energy can be released.

gollark: I did read that while different languages have different syllable rates and different amounts of information per syllable, they all have very similar information transmission rates.
gollark: Verbs unnecessary. English low information density so possible to infer verbs from context in many cases.
gollark: I have at least 3 ideas saved somewhere.
gollark: Maybe I should writing.
gollark: Thank you.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.