Lithium molybdenum purple bronze

Lithium molybdenum purple bronze is a chemical compound with formula Li
0.9
Mo
6
O
17
, that is, a mixed oxide of molybdenum and lithium. It can be obtained as flat crystals with a purple-red color and metallic sheen (hence the "purple bronze" name).[1][2]

This compound is one of several molybdenum bronzes with general formula A
x
Mo
y
O
z
where A is an alkali metal or thallium Tl. It stands out among them (and also among the sub-class of "purple" molybdenum bronzes) for its peculiar electrical properties, including a marked anisotropy that makes it a "quasi-1D" conductor, and a metal-to-insulator transition as it is cooled below 30 K.

Preparation

The compound was first obtained by Martha Greenblatt and others by a temperature gradient flux technique. In a typical preparation, a stoichometric melt of Li
2
MoO
4
, MoO
2
and MoO
3
is maintained in a temperature gradient from 490 to 640 °C over 15 cm in vacuum over several days. Excess reagents are dissolved with a hot potassium carbonate solution releasing metallic-purple plate-like crystals, a couple mm wide and less than a mm thick.[1][3]

Structure

The crystal structure of Li
0.9
Mo
6
O
17
was determined by Onoda and others through single-crystal X-ray diffraction. The crystal system is monoclinic, with approximate unit cell dimensions a = 1.2762 nm, b = 0.5523 nm, and c = 0.9499 nm, with angle β = 90.61°, volume V = 0.6695 nm3 and Z = 2. In typical crystals, a is the shortest dimension (perpendicular to the plates) and b the longest. The density is 4.24 g/cm3. The structure is rather different from that of potassium molybdenum purple bronze K
0.9
Mo
6
O
17
, except that both are organized in layers. The difference may be explained by the relative sizes of the K+
and Li+
ions.[1][2]

The unit cell contains six crystallographically independent molybdenum sites. One-third of the molybdenum atoms are surrounded by four oxygens, two thirds are surrounded by six oxygens. The crystal is a stack of slabs; each slab consists of three layers of distorted MoO
6
octahedra sharing corners. The lithium ions are inserted in the large vacant sites between the slabs. There are zigzag chains of alternating molybdenum and oxygen atoms extending along the b axis.[2]

Properties

Lithium molybdenum purple bronze is quite different than the sodium, potassium and thallium analogs. It has a three-dimensional crystal structure, but a pseudo-one-dimensional (1D) metallic character, eventually becoming a superconductor at about 2 K[4] Its properties are most spectacular below 5 meV. The Tomonaga-Luttinger liquid theory has been invoked to explain its anomalous behavior.[5]

Electrical conductivity

At room temperature, Greenblatt and others (in 1984) measured the resistivity of lithium purple bronze along the a, b and c axes as 2.47 Ω cm, 0.0095 Ω cm, and on the order of 0.25 Ω cm, respectively.[1] The conductivities would be in the ratio 1:250:10,[2][6] which would make this compound an almost one-dimensional conductor. However, Da Luz and others (2007) measured 0.079, 0.018, and 0.050 Ω cm, respectively,[7] which corresponds to conductivity ratios 1:6:2.4 for a:b:c; whereas H. Chen and others (2010) measured 0.854, 0.016, and 0.0645 Ω cm, respectively,[3] which correspond to conductivity ratios of 1:53:13.[3]

This anisotropy has been attributed to the crystal structure, specifically to the zig-zag chains of molybdenum and oxygen atoms [2]

Resistivity and temperature

The resistivity along all three axes increases linearly with temperature from about 30 K to 300 K, as in a metal.[3] This is anomalous since such a law is expected above the Debye temperature (= 400 K for this compound)[8] The resistivity ratios along the three axes are preserved in that range.[3]

Metal-insulator transition

As the lithium purple bronze is cooled from 30 K to 20, it changes abruptly to an insulator. After reaching a minimum at about 24 K, the resistivity increases 10-fold and becomes somewhat more isotropic, with conductivities 1:25:14. The anisotropy is partially restored if a magnetic field is applied perpendicular to the b axis.[3] The transition may be related to the onset of a charge density wave.[1] Santos and others have observed that the thermal expansion coefficient is largest along the a axis, so cooling will bring the conducting chains closer together, leading to a dimensional cross-over.[9] The theory of Luttinger liquids then predicts such behavior. Anyway, as of 2010 there was no consensus explanation for this transition.[3]

Superconducting state

Lithium molybdenum purple bronze becomes superconductor between 1 and 2 K.[1]

Thermal conductivity

Li0.9Mo6O17, due to spin–charge separation, can have a much higher thermal conductivity than predicted by the Wiedemann-Franz law. [10]

Magnetoresistance

The magnetoresistance of lithium purple bronze is negative when the magnetic field is applied along the b-axis, but large and positive when the field is applied along the a-axis and the c-axis.[3]

gollark: No, ironic statements should be considered merely ironical.
gollark: Yes, but only ironically or when I am on drugs.
gollark: You seem like a "haha yes the government must intervene in everything" person.
gollark: I can tell.
gollark: * boxes

See also

References

  1. M. Greenblatt, W. H. McCarroll, R. Neifeld, M. Croft, J. V. Waszczak (1984), "Quasi two-dimensional electronic properties of the lithium molybdenum bronze, Li
    0.9
    Mo
    6
    O17
    ". Solid State Communications, volume 51, issue 9, pages 671–674. doi:10.1016/0038-1098(84)90944-X
  2. M. Onoda, K. Toriumi, Y. Matsuda, M. Sato "Crystal structure of lithium molybdenum purple bronze Li
    0.9
    Mo
    6
    O
    17
    " Journal of Solid State Chemistry, volume 66, issue 1, pages 163–170 doi:10.1016/0022-4596(87)90231-3
  3. H. Chen, J. J. Ying, Y. L. Xie, G. Wu, T. Wu and X. H. Chen (2010) "Magnetotransport properties in purple bronze Li
    0.9
    Mo
    6
    O
    17
    single crystal". Europhysics Letters, volume 89, issue 6, article 67010 doi:10.1209/0295-5075/89/67010
  4. Myung Hwan Whangbo, Enric Canadell (1988), "Band electronic structure of the lithium molybdenum purple bronze Li
    0.9
    Mo
    6
    O17
    ". Journal of the American Chemical Society, volume 110, issue 2, pages 358–363. doi:10.1021/ja00210a006
  5. P. Chudzinski, T. Jarlborg, and T. Giamarchi (2012), "Luttinger-liquid theory of purple bronze Li
    0.9
    Mo
    6
    O17
    in the charge regime". Physical Review B, volume 86, paper 075147 (19 pages). doi:10.1103/PhysRevB.86.075147
  6. Martha Greenblatt (1996), "Molybdenum and tungsten bronzes: Low-dimensional metals with unusual properties". In C. Schlenker ed., "Physics and Chemistry of Low-Dimensional Inorganic Conductors" Book, Springer, 481 pages. ISBN 9780306453045
  7. M. S. da Luz, C. A. M. dos Santos, J. Moreno, B. D. White, and J. J. Neumeier (2007), "Anisotropic electrical resistivity of quasi-one-dimensional Li
    0.9
    Mo
    6
    O
    17
    determined by the Montgomery method" Physical Review B, volume 76, issue 23, paper 233105 (3 pages) doi:10.1103/PhysRevB.76.233105
  8. Mohamed Boujida, Claude Escribe-Filippini, Jacques Marcus, Claire Schlenker (1988), "Superconducting properties of the low dimensional lithium molybdenum purple bronze Li
    0.9
    Mo
    6
    O17
    ". Physica C: Superconductivity, volumes 153–155, part 1, pages 465–466. doi:10.1016/0921-4534(88)90685-5
  9. C. A. M. dos Santos, B. D. White, Yi-Kuo Yu, J. J. Neumeier, and J. A. Souza (2007), "Dimensional crossover in the purple bronze Li
    0.9
    Mo
    6
    O17
    " Physical Review Letters, volume 98, issue 26, paper 266405 (4 pages) doi:10.1103/PhysRevLett.98.266405
  10. Wiedemann-Franz Law: Physicists break 150-year-old empirical laws of physics,Gross violation of the Wiedemann–Franz law in a quasi-one-dimensional conductor Wakeham et al. 2011
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.