Lie operad
In mathematics, the Lie operad is an operad whose algebras are Lie algebras. The notion (at least one version) was introduced by Ginzburg & Kapranov (1994) in their formulation of Koszul duality.
Definition à la Ginzburg–Kapranov
Let denote the free Lie algebra (over some field) with the generators and the subspace spanned by all the bracket monomials containing each exactly once. The symmetric group acts on by permutations and, under that action, is invariant. Hence, is an operad.[1]
The Koszul-dual of is the commutative-ring operad, an operad whose algebras are commutative rings.
Notes
- Ginzburg & Kapranov 1994, § 1.3.9.
gollark: !inc
gollark: Oh, I should deploy the.
gollark: !inc
gollark: Oh, it was harmed by the unicode incursion.
gollark: Is osmarksrobot not working?
References
- Ginzburg, Victor; Kapranov, Mikhail (1994), "Koszul duality for operads", Duke Mathematical Journal, 76 (1): 203–272, doi:10.1215/S0012-7094-94-07608-4, MR 1301191
External links
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.