Levuglandin

Levuglandins are reactive aldehydes formed by the spontaneous rearrangement of prostaglandin H (PGH). Enantiomerically pure levuglandin (LG) E2 can also be formed through the cyclooxygenase (COX) pathway by a rearrangement of the prostaglandin (PG) endoperoxide PGH 2.[1] They are nonclassic eicosanoids. One species, levuglandin E2, (LGE2), forms neurotoxic adducts with amyloid beta.[2] Levuglandins and isolevuglandins can damage proteins by covalent adduction, thereby interfering with their normal functions. These lipid-derived protein modifications may serve as dosimeters of oxidative injury. Elevated plasma levels of isoLG-protein epitopes are associated with atherosclerosis but are independent of total cholesterol, a classical risk factor.

Levuglandin D2
Names
IUPAC name
(5Z,8R,9R,10E,12S)-9-acetyl-8-formyl-12- hydroxyheptadeca-5,10-dienoic acid
Identifiers
3D model (JSmol)
ChemSpider
KEGG
Properties
C20H32O5
Molar mass 352.465 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references
Levuglandin E2
Names
IUPAC name
(5Z,8R,9R,10E,12S)-8-acetyl-9-formyl-12- hydroxyheptadeca-5,10-dienoic acid
Other names
LGE2
Identifiers
3D model (JSmol)
ChemSpider
KEGG
Properties
C20H32O5
Molar mass 352.465 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

History

Though spontaneous rearrangements of PGH2 are known to generate prostaglandins (PG) PGD2 and PGE2.[3][4] Prof. Robert Salomon at Case Western Reserve University discovered that a novel alternative rearrangement also occurs that producing two γ-ketoaldehydes[5] and named them levuglandins LGD2 and LGE2 as they are derivatives of levulinaldehyde with prostanoid side chains.

gollark: EATW or me?
gollark: What hasn't?
gollark: ```You have, through your own admission on the forums, done the exact thing that got EATW banned from the API.```
gollark: I don't know exactly.
gollark: It's funny that TJ09 complained before, say, Fuzzbucket did, though.

References

  1. Salomon RG (2005). "Isolevuglandins, oxidatively truncated phospholipids, and atherosclerosis". Ann. N. Y. Acad. Sci. 1043: 327–42. Bibcode:2005NYASA1043..327S. doi:10.1196/annals.1333.040. PMID 16037255. Retrieved 2008-01-16.
  2. Bautaud; Brame, CJ; Salomon, RG; Roberts Lj, 2nd; Oates, JA; et al. (1999). "PGH -derived levuglandin adducts increase the neurotoxicity of Amyloid Β142" (pdf). Biochemistry. 38 (29): 9389–9396. doi:10.1021/bi990470+. PMID 10413514. Retrieved 2007-10-02.
  3. Hamberg M., Samuelsson B. (1973). "Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis". Proc. Natl. Acad. Sci. U.S.A. 70 (3): 899–903. Bibcode:1973PNAS...70..899H. doi:10.1073/pnas.70.3.899. PMC 433384. PMID 4514999.
  4. Nugteren D.H., Hazelhof E. (1973). "Isolation and properties of intermediates in prostaglandin biosynthesis". Biochim. Biophys. Acta. 326 (3): 448–461. doi:10.1016/0005-2760(73)90145-8. PMID 4776443.
  5. Salomon R.G.; Miller D.B.; Zagorski M.G.; Coughlin D.J. (1984). "Prostaglandin endoperoxides. 14. Solvent-induced fragmentation of prostaglandin endoperoxides. New aldehyde products from PGH2 and a novel intramolecular 1*2-hydride shift during endoperoxide fragmentation in aqueous solution". J. Am. Chem. Soc. 106 (20): 6049–6060. doi:10.1021/ja00332a049.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.