Laver table

In mathematics, Laver tables (named after Richard Laver, who discovered them towards the end of the 1980s in connection with his works on set theory) are tables of numbers that have certain properties. They occur in the study of racks and quandles.

Definition

For a given natural number n, one can define the n-th Laver table (with 2n rows and columns) by setting

,

where p denotes the row and q denotes the column of the entry. The operation is the unique operation that satisfies the equations

and

.

The latter is sometimes referred to as the self-distributive law, and sets satisfying only that property are called shelves.

The resulting table is then called the n-th Laver table; for example, for n = 2, we have:

1 2 3 4
1 2 4 2 4
2 3 4 3 4
3 4 4 4 4
4 1 2 3 4

There is no known closed-form expression to calculate the entries of a Laver table directly.[1]

Periodicity

When looking at the first row of entries in a Laver table, it can be seen that the entries repeat with a certain periodicity m. This periodicity is always a power of 2; the first few periodicities are 1, 1, 2, 4, 4, 8, 8, 8, 8, 16, 16, ... (sequence A098820 in the OEIS). The sequence is increasing, and it was proved in 1995 by Richard Laver that under the assumption that there exists a rank-into-rank (a large cardinal), it actually increases without bound.[2] Nevertheless, it grows extremely slowly; Randall Dougherty showed that the first n for which the table entries' period can possibly be 32 is A(9,A(8,A(8,255))), where A denotes the Ackermann function.[3]

gollark: ALL is to be quite small.
gollark: In compression, nothing is excessive.
gollark: Thus, infinity percent savings over yours.
gollark: MINE is better. ANY byte sequence, including zero length ones, shall be interpreted as the entire Shrek movie.
gollark: Here it is. Discord can't play it as it does not support AV1.

References

  1. Lebed, Victoria (2014), "Laver Tables: from Set Theory to Braid Theory", Annual Topology Symposium, Tohoku University, Japan (PDF). See slide 8/33.
  2. Laver, Richard (1995), "On the algebra of elementary embeddings of a rank into itself", Advances in Mathematics, 110 (2): 334–346, doi:10.1006/aima.1995.1014, hdl:10338.dmlcz/127328, MR 1317621.
  3. Dougherty, Randall (1993), "Critical points in an algebra of elementary embeddings", Annals of Pure and Applied Logic, 65 (3): 211–241, arXiv:math.LO/9205202, doi:10.1016/0168-0072(93)90012-3, MR 1263319.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.