Lagrange reversion theorem
In mathematics, the Lagrange reversion theorem gives series or formal power series expansions of certain implicitly defined functions; indeed, of compositions with such functions.
Let v be a function of x and y in terms of another function f such that
Then for any function g, for small enough y:
If g is the identity, this becomes
In 1770, Joseph Louis Lagrange (1736–1813) published his power series solution of the implicit equation for v mentioned above. However, his solution used cumbersome series expansions of logarithms.[1][2] In 1780, Pierre-Simon Laplace (1749–1827) published a simpler proof of the theorem, which was based on relations between partial derivatives with respect to the variable x and the parameter y.[3][4][5] Charles Hermite (1822–1901) presented the most straightforward proof of the theorem by using contour integration.[6][7][8]
Lagrange's reversion theorem is used to obtain numerical solutions to Kepler's equation.
Simple proof
We start by writing:
Writing the delta-function as an integral we have:
The integral over k then gives and we have:
Rearranging the sum and cancelling then gives the result:
References
- Lagrange, Joseph Louis (1770) "Nouvelle méthode pour résoudre les équations littérales par le moyen des séries," Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, vol. 24, pages 251–326. (Available on-line at: http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/?IDDOC=41070%5B%5D .)
- Lagrange, Joseph Louis, Oeuvres, [Paris, 1869], Vol. 2, page 25; Vol. 3, pages 3–73.
- Laplace, Pierre Simon de (1777) "Mémoire sur l'usage du calcul aux différences partielles dans la théories des suites," Mémoires de l'Académie Royale des Sciences de Paris, vol. , pages 99–122.
- Laplace, Pierre Simon de, Oeuvres [Paris, 1843], Vol. 9, pages 313–335.
- Laplace's proof is presented in:
- Goursat, Édouard, A Course in Mathematical Analysis (translated by E.R. Hedrick and O. Dunkel) [N.Y., N.Y.: Dover, 1959], Vol. I, pages 404–405.
- Hermite, Charles (1865) "Sur quelques développements en série de fonctions de plusieurs variables," Comptes Rendus de l'Académie des Sciences des Paris, vol. 60, pages 1–26.
- Hermite, Charles, Oeuvres [Paris, 1908], Vol. 2, pages 319–346.
- Hermite's proof is presented in:
- Goursat, Édouard, A Course in Mathematical Analysis (translated by E. R. Hedrick and O. Dunkel) [N.Y., N.Y.: Dover, 1959], Vol. II, Part 1, pages 106–107.
- Whittaker, E.T. and G.N. Watson, A Course of Modern Analysis, 4th ed. [Cambridge, England: Cambridge University Press, 1962] pages 132–133.
External links
- Lagrange Inversion [Reversion] Theorem on MathWorld
- Cornish–Fisher expansion, an application of the theorem
- Article on equation of time contains an application to Kepler's equation.