Kummer's congruence

In mathematics, Kummer's congruences are some congruences involving Bernoulli numbers, found by Ernst Eduard Kummer (1851).

Kubota & Leopoldt (1964) used Kummer's congruences to define the p-adic zeta function.

Statement

The simplest form of Kummer's congruence states that

where p is a prime, h and k are positive even integers not divisible by p−1 and the numbers Bh are Bernoulli numbers.

More generally if h and k are positive even integers not divisible by p  1, then

whenever

where φ(pa+1) is the Euler totient function, evaluated at pa+1 and a is a non negative integer. At a = 0, the expression takes the simpler form, as seen above. The two sides of the Kummer congruence are essentially values of the p-adic zeta function, and the Kummer congruences imply that the p-adic zeta function for negative integers is continuous, so can be extended by continuity to all p-adic integers.

gollark: You get a cult channel‽
gollark: I worry that we'll end up with online-ish education but done in a really stupid way.
gollark: You would expect better given the amount of money and whatnot going into schools.
gollark: Which seems plausible as actually school is quite bad.
gollark: I read somewhere that generally homeschooled people (in the US) were only something like one year behind non-homeschooled people in education.

See also

References

  • Koblitz, Neal (1984), p-adic Numbers, p-adic Analysis, and Zeta-Functions, Graduate Texts in Mathematics, vol. 58, Berlin, New York: Springer-Verlag, ISBN 978-0-387-96017-3, MR 0754003
  • Kubota, Tomio; Leopoldt, Heinrich-Wolfgang (1964), "Eine p-adische Theorie der Zetawerte. I. Einführung der p-adischen Dirichletschen L-Funktionen", Journal für die reine und angewandte Mathematik, 214/215: 328–339, doi:10.1515/crll.1964.214-215.328, ISSN 0075-4102, MR 0163900
  • Kummer, Ernst Eduard (1851), "Über eine allgemeine Eigenschaft der rationalen Entwicklungscoëfficienten einer bestimmten Gattung analytischer Functionen", Journal für die Reine und Angewandte Mathematik, 41: 368–372, doi:10.1515/crll.1851.41.368, ISSN 0075-4102, ERAM 041.1136cj
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.