Krull's separation lemma
In abstract algebra, Krull's separation lemma is a lemma in ring theory. It was proved by Wolfgang Krull in 1928.[1]
Statement of the lemma
Let be an ideal and let be a multiplicative system (i.e. is closed under multiplication) in a ring , and suppose . Then there exists a prime ideal satisfying and .[2]
gollark: Mayhaps.
gollark: I should add this to potatOS... but where?
gollark: RECURSION RECURSION RECURSION
gollark: Fixed mine.
gollark: Oops, hold on.
References
- Krull, Wolfgang (1928). "Zur Theorie der zweiseitigen Ideale in nichtkommutativen Bereichen". Mathematische Zeitschrift. 28 (1): 481–503. doi:10.1007/BF01181179. ISSN 0025-5874.
- Sun, Shu-Hao (1992). "On separation lemmas". Journal of Pure and Applied Algebra. 78 (3): 301–310. doi:10.1016/0022-4049(92)90112-S.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.