Killing tensor

A Killing tensor, named after Wilhelm Killing, is a symmetric tensor, known in the theory of general relativity, that satisfies

where the parentheses on the indices refer to the symmetric part.

This is a generalization of a Killing vector. While Killing vectors are associated with continuous symmetries (more precisely, differentiable), and hence very common, the concept of Killing tensor arises much less frequently. The Kerr solution is the most famous example of a manifold possessing a Killing tensor.

Killing-Yano tensor

An antisymmetric tensor of order p, , is a Killing-Yano tensor fr:Tenseur de Killing-Yano if it satisfies the equation

.

While also a generalization of the Killing vector, it differs from the usual Killing tensor in that the covariant derivative is only contracted with one tensor index.

gollark: As I said, just have multiple out of game servers using Node or whatever and have a Krist-y API for ingame computers to use.
gollark: Oh, Lua libraries.
gollark: There are good libraries available, so that doesn't sound very problematic.
gollark: It is not as if everything has to be a full node in a distributed one.
gollark: <@114827439070248961> You could just use multiple out of game servers.

See also

References

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.