k-frame
In linear algebra, a branch of mathematics, a k-frame is an ordered set of k linearly independent vectors in a space; thus k ≤ n, where n is the dimension of the vector space, and if k = n an n-frame is precisely an ordered basis.
If the vectors are orthogonal, or orthonormal, the frame is called an orthogonal frame, or orthonormal frame, respectively.
Properties
- The set of k-frames (particularly the set of orthonormal k-frames) in a given space X is known as the Stiefel manifold, and denoted Vk(X).
- A k-frame defines a parallelotope (a generalized parallelepiped); the volume can be computed via the Gram determinant.
gollark: Implementation?
gollark: <@160279332454006795> <@160279332454006795> <@160279332454006795> <@160279332454006795> <@160279332454006795> <@160279332454006795> <@160279332454006795> <@352485163566891018>
gollark: You do all of the thinking and ideaing.
gollark: What esoł?
gollark: Yes, there are AT LEAST three more esolangs.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.