k–omega turbulence model

In computational fluid dynamics, the k–omega (k–ω) turbulence model is a common two-equation turbulence model, that is used as a closure for the Reynolds-averaged Navier–Stokes equations (RANS equations). The model attempts to predict turbulence by two partial differential equations for two variables, k and ω, with the first variable being the turbulence kinetic energy (k) while the second (ω) is the specific rate of dissipation (of the turbulence kinetic energy k into internal thermal energy).

Standard (Wilcox) k–ω turbulence model [1]

The eddy viscosity νT, as needed in the RANS equations, is given by: νT = k, while the evolution of k and ω is modelled as:

For recommendations for the values of the different parameters, see Wilcox (2008).

Notes

gollark: So if you feed the reactor output straight into a cell and make the cell output into three fluxducts, you could have the actual long range wiring carry all the power, but each machine would only receive 1kRF/t max unless you have a bunch of connections on that machine.
gollark: Er, per terminal, not pair.
gollark: It's actually 1kRF/t per terminal pair.
gollark: Yes, but they have weirdness.
gollark: They're not *that* dangerous.

References

  • Wilcox, D. C. (2008), Formulation of the k–ω Turbulence Model Revisited, 46, AIAA Journal, pp. 2823–2838, Bibcode:2008AIAAJ..46.2823W, doi:10.2514/1.36541
  • Wilcox, D. C. (1998), Turbulence Modeling for CFD (2nd ed.), DCW Industries, ISBN 0963605100
  • Bradshaw, P. (1971), An introduction to turbulence and its measurement, Pergamon Press, ISBN 0080166210
  • Versteeg, H.; Malalasekera, W. (2007), An Introduction to Computational Fluid Dynamics: The Finite Volume Method (2nd ed.), Pearson Education Limited, ISBN 0131274988
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.