John McKay (mathematician)

John K. S. McKay (born 18 November 1939, Kent) is a dual British/Canadian citizen, a mathematician at Concordia University, known for his discovery of monstrous moonshine, his joint construction of some sporadic simple groups, for the Mckay conjecture in representation theory, and for the McKay correspondence relating certain finite groups to Lie groups.

Biography

McKay earned his Bachelor and Diploma in 1961 and 1962 at the University of Manchester, and his Ph.D.[1] in 1971 from the University of Edinburgh.[2] Since 1974 he works at Concordia University, since 1979 as a professor in Computer Science.

He was elected a fellow of the Royal Society of Canada in 2000, and won the 2003 CRM-Fields-PIMS prize.

In April 2007 a Joint Conference was organised by the Université de Montréal and Concordia University honouring four decades of the work of John McKay.

gollark: I've seen a bunch of libraries in many, many languages for terminal manipulation.
gollark: I guess it will work fast enough, unless you want to do... anything at all... fast.
gollark: Yes, but process execution is more horribly inefficient then lua.
gollark: Calling a new process for *every* terminal position/color change, that is.
gollark: Isn't that going to be horrendously inefficient?

See also

Publications

  • McKay, J. (1965). "Algorithm 262: Number of restricted partitions of N". Comm. ACM. 8 (8): 493. doi:10.1145/365474.366060.
  • McKay, J. (1965). "Algorithm 263: Partition generator". Comm. ACM. 8 (8): 493. doi:10.1145/365474.366063.
  • McKay, J. (1965). "Algorithm 264: Map of partitions into integers". Comm. ACM. 8 (8): 493. doi:10.1145/365474.366060.
  • McKay, J. (1967). "On the representation of symmetric polynomials". Comm. ACM. 10 (7): 428–429. doi:10.1145/363427.363452.
  • McKay, J. (1967). "Symmetric group characters". Comm. ACM. 10 (7): 451–452. doi:10.1145/363427.363475.
  • McKay, J.; Bratley, P. (1967). "Algorithm 305: Symmetric polynomials". Comm. ACM. 10 (7): 450. doi:10.1145/363427.363465.
  • McKay, J.; Bratley, P. (1967). "Algorithm 313: Multi-dimensional partition generator". Comm. ACM. 10 (10): 666. doi:10.1145/363717.363783.
  • McKay, J.; Atkin, A. O. L.; Bratley, P.; Macdonald, I. G. (1967). "Some computations for m-dimensional partitions". Proc. Camb. Phil. Soc. 63 (4): 1097–1100. Bibcode:1967PCPS...63.1097A. doi:10.1017/S0305004100042171.
  • McKay, J.; Bratley, P. (1968). "More amicable numbers". Math. Comp. 22 (103): 677–678. doi:10.1090/s0025-5718-1968-0225706-9. JSTOR 2004549.
  • McKay, J. (1968). "Remark on algorithm 307: Symmetric group characters". Comm. ACM. 11 (1): 14. doi:10.1145/362851.362867.
  • McKay, J. (1968). "Remark on algorithm 305: Symmetric Polynomials". Comm. ACM. 11 (4): 272. doi:10.1145/362991.363049.
  • McKay, J. (1968). "On the evaluation of multiplicative combinatorial expressions". Comm. ACM. 11 (6): 492. doi:10.1145/363347.363357.
  • McKay, J. (1968), "A method of computing the character table of a finite group", in Churchhouse, R. F.; Herz (eds.), Computers in mathematical research, North-Holland Publishing
  • McKay, J.; Higman, G. (1969). "The construction of Janko's simple group of order 50232960". Bulletin of the London Mathematical Society. 1 (2): 89–94. doi:10.1112/blms/1.2.219-t.
  • McKay, J.; Bratley, P.; Lunnon, W. F. (1970). "Amicable numbers and their distribution". Math. Comp. 24 (110): 431–432. doi:10.1090/s0025-5718-1970-0271005-8. JSTOR 2004490.
  • McKay, J. (1970). "Algorithm 371: Partitions in natural order". Comm. ACM. 13 (1): 52. doi:10.1145/361953.361980.
  • McKay, J. (1970). "Algorithm 391: Unitary symmetric polynomials". Comm. ACM. 13 (8): 512. doi:10.1145/362705.362719.
  • McKay, J. (1970), "The construction of the character table of a finite group from generators and relations", in Leech (ed.), Computational problems in abstract algebra, Pergamon Press, pp. 89–100
  • McKay, J. (1970), "Multi-dimensional partitions", in Welsh (ed.), Combinatorial theory and its applications, Academic Press
  • McKay, J. (1971), "Subgroups and permutation characters", in Birkhoff; Hall (eds.), Proc. Symp. Pure Math. AMS-SIAM, pp. 171–181
  • McKay, J.; Wales, D. (1971). "The multiplier of the Higman-Sims simple group". Bulletin of the London Mathematical Society. 3 (3): 283–285. doi:10.1112/blms/3.3.283.
  • McKay, J.; Wales, D. (1971). "The multiplier of the simple groups of order 604800 and 50232960". Journal of Algebra. 17 (2): 262–272. doi:10.1016/0021-8693(71)90033-0.
  • McKay, J. (1971). "Groups and subgroups, presentations and representations". Proc. 2nd ACM symposium on symbolic and algebraic manipulation. p. 104. doi:10.1145/800204.806274.
  • McKay, J. (1972). "Irreducible representations of odd degree". Journal of Algebra. 20 (2): 416–418. doi:10.1016/0021-8693(72)90066-X.
  • Lam, C. W. H.; McKay, J. (1973). "Arithmetic over a finite field, Algorithm 469". Comm. ACM. 16 (11): 699. doi:10.1145/355611.362544.
  • McKay, J.; Regener, E. (1974). "Algorithm 482:Transitivity sets". Comm. ACM. 17 (8): 470. doi:10.1145/361082.361098.
  • McKay, J. (1974), "Computing with finite simple groups", Proceedings 2nd International conference in group theory, 372, Springer-Verlag, pp. 448–452
  • Jonsson, W.; McKay, J. (1976). "More about the Mathieu group". Canadian Journal of Mathematics. 28 (5): 929–937. doi:10.4153/cjm-1976-090-x. MR 0427103.
  • McKay, J. (1976). "The largest degrees of irreducible characters of the symmetric group". Mathematics of Computation. 30 (135): 624–631. doi:10.2307/2005331. JSTOR 2005331.
  • Fischer, J.; McKay, J. (1978). "The non-abelian simple groups G, |G| < 106 - maximal subgroups". Mathematics of Computation. 32 (144): 1293–1302. doi:10.2307/2006354. JSTOR 2006354. MR 0498831.
  • Erbach, D. W.; Fischer, J.; McKay, J. (1979). "Polynomials with PSL(2,7) as Galois group". Journal of Number Theory. 11 (1): 69–75. doi:10.1016/0022-314X(79)90020-9. MR 0527761.
  • McKay, J. (1979). "Some remarks on computing Galois groups". SIAM Journal on Computing. 8 (3): 344–347. doi:10.1137/0208026. MR 0539252.
  • Cannon, J.; McKay, J.; Young, K. C. (1979). "The non-abelian simple groups G, |G| < 105 - minimal presentations". Communications in Algebra. 7 (13): 1397–1406. doi:10.1080/00927877908822409.
  • McKay, J. (1979). "The non-abelian simple groups G, |G\| < 106 - character tables". Comm. In Algebra. 7 (13): 1407–1445. doi:10.1080/00927877908822410.
  • McKay, J.; Young, K. C. (1979). "The non-abelian simple groups G, |G| < 106 - minimal generating pairs". Mathematics of Computation. 33 (146): 812–814. doi:10.2307/2006317. JSTOR 2006317.
  • McKay, J. (1980). "Graphs singularities and finite groups". Proc. of 1979 Santa Cruz group theory conference. AMS Symposia in Pure Mathematics. 37. pp. 183–186. ISBN 0-8218-1440-0.
  • McKay, J. (1981). "Cartan matrices, finite groups of quaternions, and Kleinian singularities". Proc. AMS. 81: 153–154. doi:10.1090/S0002-9939-1981-0589160-8.
  • McKay, J.; Patera, J.; Sharp, R.T. (1981). "Second and fourth indices of plethysms". J. Math. Phys. 22 (12): 2770–2774. Bibcode:1981JMP....22.2770M. doi:10.1063/1.525183. MR 0638081.
  • Ford, D. J.; McKay, J. (1982), "Representations and Coxeter graphs", The Geometric Vein, Springer-Verlag
  • Lam, C. W. H.; Thiel, L.; Swiercz, S.; McKay, J. (1983). "The nonexistence of ovals in a projective plane of order 10". Discrete Math. 45 (2–3): 319–321. doi:10.1016/0012-365X(83)90049-3. MR 0704249.
  • Butler, G.; McKay, J. (1983). "The transitive groups of degree up to eleven". Comm. In Algebra. 11 (7): 863–911. doi:10.1080/00927878308822884.
  • Kolesova, G.; McKay, J. (1984), "Practical strategies for computing Galois groups", in Atkinson, M. D. (ed.), Computing in Groups, Academic Press, pp. 297–299, MR 0760664
  • Dummit, D.; Kisilevsky, H.; McKay, J. (1985). "Multiplicative products of η-functions". Finite groups—coming of age (Montreal, Que., 1982). Contemporary Mathematics. 45. Providence, RI: American Mathematical Society. pp. 89–98. doi:10.1090/conm/045/822235. MR 0822235.
  • McKay, J., ed. (1985). Finite groups—coming of age (Montreal, Que., 1982). Contemporary Mathematics. 45. Providence, RI: American Mathematical Society. doi:10.1090/conm/045. ISBN 9780821850473.
  • McKay, J.; Regener, E. (1985). "Actions of permutation groups on r-sets". Comm. In Algebra. 13 (3): 619–630. doi:10.1080/00927878508823180. MR 0773753.
  • Soicher, L. H.; McKay, J. (1985). "Computing Galois groups over the rationals". J. Number Theory. 20 (3): 273–281. doi:10.1016/0022-314X(85)90022-8.
  • Ford, D.; McKay, J. (1986). From polynomials to Galois groups. International EUROCAL conference in computer algebra. Lecture Notes in Computer Science. 204. Springer-Verlag. pp. 535–536. doi:10.1007/3-540-15984-3_324.
  • McKay, J.; Stauduhar, R. (1987). "Coda to a theorem of Schur". Crelle's Journal. 377: 219–220.
  • McKay, J. (1987). "On computing discriminants". Amer. Math. Monthly. 94 (6): 523–527. doi:10.2307/2322843. JSTOR 2322843.
  • McKay, J. (1988), "Advances in computational Galois theory", in Tangora (ed.), Computers in Algebra, 111, Marcel Dekker, pp. 99–101
  • Conder, M.; McKay, J. (1988). "A necessary condition for transitivity of a finite permutation group". Bulletin of the London Mathematical Society. 20 (3): 235–238. doi:10.1112/blms/20.3.235.
  • Ford, D.; McKay, J. (1989), "Computation of Galois groups from polynomials over the rationals", in Chudnovsky; Jenks (eds.), Computer Algebra, 113, Marcel Dekker, pp. 145–150
  • McKay, J.; Strauss, H. (1990). "The q-series of monstrous moonshine & the decomposition of the head characters". Comm. In Algebra. 18 (1): 253–278. doi:10.1080/00927879008823911.
  • Ford, D.; McKay, J. (1989). "Ramifications of Ramanujan's work on eta-products". Proc. Indian Acad. Sci. 99 (3): 221–229. doi:10.1007/bf02864394.
  • Darmon, H.; McKay, J. (1991). "A continued fraction and fixed-point-free permutations". Amer. Math. Monthly. 98 (1): 25–26. doi:10.2307/2324031. JSTOR 2324031.
  • McKay, J. (1991). "A generalized Hecke operator and functions like j(z)". AMS Abstracts. 12: 283.
  • Alexander, D.; Cummins, C.; McKay, J.; Simons, C. (1992), "Completely replicable functions", in Liebeck; Saxl (eds.), Groups, Combinatorics and Geometry, LMS Lecture Note Series, 165, Cam. Univ. Press, pp. 87–98, doi:10.1017/CBO9780511629259.010, MR 1200252
  • Casperson, D.; McKay, J. (1992). "An ideal decomposition algorithm". AMS Abstracts. 13: 405.
  • Conway, J.; McKay, J. (April 1992). "The Mathieu groups as Galois groups". AMS Abstracts.
  • Casperson, D.; McKay, J. (1994). "Symmetric functions, m-sets, and Galois groups". Math. Comp. 63 (208): 749–757. doi:10.1090/S0025-5718-1994-1234424-5. JSTOR 2153295.
  • Ford, D.; McKay, J.; Norton, S. (1994). "More on replicable functions". Comm. In Algebra. 22 (13): 5175–5193. doi:10.1080/00927879408825127.
  • McKay, J. (1995). "A note on the elliptic curves of Harada-Lang". In Arasu, K. T. (ed.). Groups, Difference Sets and the Monster. de Gruyter. p. 409. ISBN 3-11-014791-2.
  • Casperson, D.; Ford, D.; McKay, J. (1996). "Ideal Decompositions and Subfields". J. Symb. Comput. 21 (2): 133–137. doi:10.1006/jsco.1996.0005.
  • Conder, M.; McKay, J. (1996). "The marking of the Golay code". New Zealand J. Math. 25: 133–139. CiteSeerX 10.1.1.42.8094.
  • Conway, J.; Hulpke, A.; McKay, J. (1996). "On transitive permutation groups". J. Of Mathematics & Computation. 1.
  • Cohn, H.; McKay, J. (1996). "Spontaneous generation of modular invariants". Math. Comp. 65 (215): 1295–1309. doi:10.1090/S0025-5718-96-00726-0. JSTOR 2153808.
  • Mattman, T.; McKay, J. (1997). "Computation of Galois groups over function fields". Math. Comp. 66 (218): 823–831. doi:10.1090/S0025-5718-97-00831-4. JSTOR 2153898.
  • McKay, J.; Stauduhar, R. P. (1997). "Finding relations among the roots of an irreducible polynomial". Proceedings of ISSAC'97. Maui. pp. 75–77. doi:10.1145/258726.258752.
  • Noro, M.; McKay, J. (1997). "Computation of replicable functions on RISA/Asir". Proceedings of PASCO'97. Maui. pp. 130–138. doi:10.1145/266670.266713.
  • McKay, J. (1997). The essentials of moonshine. ICU Suzuki Conf.
  • McKay, J.; Sebbar, A. (1998). "Fuchsian groups, Schwarzians, and lattices". Comptes rendus de l'Académie des Sciences de Paris. 327 (4): 343–348. Bibcode:1998CRASM.327..343M. doi:10.1016/S0764-4442(99)80045-7.
  • McKay, J. (1999). "The semi-affine Coxeter-Dynkin diagram and G < SU2". Can. J. Math. 51: 1226–1229. arXiv:math/9907089. doi:10.4153/cjm-1999-054-9.
  • McKay, J. (1999). "Semi-affine Coxeter-Dynkin graphs and G < SU2". arXiv:math/9907089.
  • Harnad, J.; McKay, J. (2000). "Modular Solutions to Equations of Halphen Type". Proceedings of the Royal Society A. 456: 261–294. arXiv:solv-int/9804006. Bibcode:2000RSPSA.456..261H. doi:10.1098/rspa.2000.0517. MR 1811320.
  • Harnad, J.; McKay, J. (2000). "Modular Invariants and Generalized Halphen Systems". C. R. M. Proc. 25: 181–195. MR 1771721.
  • McKay, J.; Sebbar, A. (2000). "Fuchsian groups, Automorphic functions, and Schwarzians". Math. Annalen. 318 (2): 255–275. doi:10.1007/s002080000116.
  • Matzat, B.; McKay, J.; Yokoyama, Y. (2000). "Algorithmic Methods in Galois Theory". J. Symb. Comput. 30: 631–872. doi:10.1006/jsco.2000.0389.
  • McKay, J.; Sebbar, A. (2001), "Arithmetic Semistable Elliptic Surfaces", Proceedings of Moonshine Workshop
  • McKay, J.; Sebbar, A. (2001), "Proceedings on Moonshine and Related Topics", CRM Proceedings and Lecture Notes, 30
  • Ford, D.J.; McKay, J. (2002). "Monstrous Moonshine – Problems Arising I, Tate Characters". Cite journal requires |journal= (help)
  • Cox, D. A.; McKay, J.; Stevenhagen, P. (2004). "Principal Moduli and Class Fields". Bulletin of the London Mathematical Society. 36 (1): 3–12. arXiv:math/0311202. doi:10.1112/S0024609303002583.
  • Conway, J.; McKay, J.; Sebbar, A. (2004). "On the discrete groups of Moonshine". Proc. Amer. Math. Soc. 132 (8): 2233–2240. doi:10.1090/S0002-9939-04-07421-0.
  • McKay, J.; Sebbar, Abdellah (2007). "Replicable Functions: An introduction". Frontiers in Number Theory, Physics, and Geometry, II. Springer. pp. 373–386. doi:10.1007/978-3-540-30308-4_10.
  • McKay, John; Sevilla, David (2008). "Aplicacion de la descomposicion racional univariada a monstrous moonshine". arXiv:0805.2311 [math.NT].
  • McKay, John; Sevilla, David (2008). "Decomposing replicable functions". LMS J. Comput. Math. 11: 146–171. arXiv:0803.3419. doi:10.1112/s1461157000000553. MR 2410918.
  • McKay, J. (2009), "Introduction and Background", Groups and Symmetries. From Neolithic Scots to John McKay, CRM Proceedings and Lecture Notes, 47, Am. Math. Soc, pp. 1–2
  • Conway, John; McKay, J.; Trojan, Allan (2010). "Galois groups over function fields of positive characteristic". Proc. AMS. 138 (4): 1205–1212. arXiv:0811.0076. doi:10.1090/S0002-9939-09-10130-2.

References

  1. "Computing with finite groups". Munn, W.D., Michaelson, S. 1971. hdl:1842/6615. Cite journal requires |journal= (help)CS1 maint: others (link)
  2. John McKay at the Mathematics Genealogy Project
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.