Jantzen filtration

In representation theory, a Jantzen filtration is a filtration of a Verma module of a semisimple Lie algebra, or a Weyl module of a reductive algebraic group of positive characteristic. Jantzen filtrations were introduced by Jantzen (1979).

Jantzen filtration for Verma modules

If M(λ) is a Verma module of a semisimple Lie algebra with highest weight λ, then the Janzen filtration is a decreasing filtration

It has the following properties:

  • M(λ)1=N(λ), the unique maximal proper submodule of M(λ)
  • The quotients M(λ)i/M(λ)i+1 have non-degenerate contravariant bilinear forms.
  • The Jantzen sum formula holds:
where denotes the formal character.
gollark: Macron idea: Macron cannot exist.
gollark: Macron idea: the AST is a monad.
gollark: Parse it bidirectionally.
gollark: I mean, I guess it implicitly is as it doesn't have any audio whatsoever.
gollark: Silence is not a Minoteaur feature.

References

  • Beilinson, A. A.; Bernstein, Joseph (1993), "A proof of Jantzen conjectures", in Gelʹfand, Sergei; Gindikin, Simon (eds.), I. M. Gelʹfand Seminar (PDF), Adv. Soviet Math., 16, Providence, R.I.: American Mathematical Society, pp. 1–50, ISBN 978-0-8218-4118-1, archived from the original (PDF) on 2015-07-09, retrieved 2011-06-15
  • Humphreys, James E. (2008), Representations of semisimple Lie algebras in the BGG category O, Graduate Studies in Mathematics, 94, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-4678-0, MR 2428237
  • Jantzen, Jens Carsten (1979), Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, 750, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0069521, ISBN 978-3-540-09558-3, MR 0552943
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.