Jackson integral

In q-analog theory, the Jackson integral series in the theory of special functions that expresses the operation inverse to q-differentiation.

The Jackson integral was introduced by Frank Hilton Jackson. For methods of numerical evaluation, see Exton (1983).

Definition

Let f(x) be a function of a real variable x. The Jackson integral of f is defined by the following series expansion:

More generally, if g(x) is another function and Dqg denotes its q-derivative, we can formally write

or

giving a q-analogue of the Riemann–Stieltjes integral.

Jackson integral as q-antiderivative

Just as the ordinary antiderivative of a continuous function can be represented by its Riemann integral, it is possible to show that the Jackson integral gives a unique q-antiderivative within a certain class of functions, see,[1]

Theorem

Suppose that If is bounded on the interval for some then the Jackson integral converges to a function on which is a q-antiderivative of Moreover, is continuous at with and is a unique antiderivative of in this class of functions.[2]

Notes

  1. Kempf, A; Majid, Shahn (1994). "Algebraic q-Integration and Fourier Theory on Quantum and Braided Spaces". Journal of Mathematical Physics. 35 (12): 6802–6837. arXiv:hep-th/9402037. Bibcode:1994JMP....35.6802K. doi:10.1063/1.530644.
  2. Kac-Cheung, Theorem 19.1.
gollark: Someone said that it was because the MEMS microphones have amplifier chips in them, which have big transistors (which apparently makes them more photosensitive) to handle the analog signal better.
gollark: Red/green/blue.
gollark: That's what RGB means, even.
gollark: Do they make fish laser goggles?
gollark: How are you meant to safely test laser goggles without other laser goggles?

References

  • Victor Kac, Pokman Cheung, Quantum Calculus, Universitext, Springer-Verlag, 2002. ISBN 0-387-95341-8
  • Jackson F H (1904), "A generalization of the functions Γ(n) and xn", Proc. R. Soc. 74 64–72.
  • Jackson F H (1910), "On q-definite integrals", Q. J. Pure Appl. Math. 41 193–203.
  • Exton, H. (1983), q-Hypergeometric Functions and Applications, New York: Halstead Press, Chichester: Ellis Horwood, ISBN 0853124914, ISBN 0470274530, ISBN 978-0470274538


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.