Integrated quantum photonics

Integrated quantum photonics, uses photonic integrated circuits to control photonic quantum states for applications in quantum technologies.[1] As such, integrated quantum photonics provides a promising approach to the miniaturization and optical scaling of optical quantum circuits.[2] Major areas of application of integrated quantum photonics include: quantum computing,[3] quantum communication, quantum simulation,[4][5][6][7] quantum walks[8][9] and quantum metrology.

Introduction

Quantum photonics is the science of generating, manipulating and detecting light in regimes where it is possible to coherently control individual quanta of the light field (photons).[10] Quantum photonics is generally recognised as being a fundamental field in exploring quantum phenomena. Quantum photonics is also expected to play a central role in advancing future technologies - such as Quantum Information Processing (QIP). Photons are particularly attractive carriers of quantum information due to their low decoherence properties, light-speed transmission and ease of manipulation. Single photons were used for the very first violations of Bells inequality,[11][12] and are employed within many highly successful proof-of principle demonstrations of emerging quantum technologies.[13]

The most common implementation of quantum photonics employs linear optical components such as beamsplitters, mirrors and wave-plates. Such realizations of quantum photonics have been used to implement Linear Optical quantum Computation (LOQC).

However, such experiments suffer from several optical scaling problems as the size of the experiments are increased.

  1. Stability - Large numbers of linear optical components can introduce non-coherent phase changes.
  2. Experiment size - Linear optical components are typical large, requiring
  3. Manufacturability - Devices built using linear optical components can present problems in mass-manufacturing

These problems are especially pertinent for LOQC applications of quantum photonics.

Integrated Quantum Photonics is an approach that addresses these problems by employing implementations of linear optical components that can be built on-chip using variations on existing fabrication technologies. Such an integrated approach to quantum photonics inherently ensures phase stability (with all components being within the same chip substrate), allowing high quality non-classical interference to be achieved.[1] Being based on well-developed fabrication techniques, the elements employed in Integrated Quantum Photonics are more readily miniaturisable, and products based on this approach can be manufactured using existing production methodologies.

History

Linear optics, as a platform for quantum computation specifically, began to show a marked rise in activity after the publication of the seminal theory paper of Knill-Laflamme-Milburn,[14] which demonstrated the feasibility of linear optical quantum computers using post-selection, feed-forward and number resolving detection. Following this there were several experimental proof-of-principle demonstrations of two-qubit gates performed in bulk optics.[15][16][17] It soon became clear that integrated optics could provide a powerful enabling technology for this emerging field.[18] Early experiments in integrated optics demonstrated the feasibility of the field via demonstrations of high-visibility non-classical and classical interference in simple components based on linear optics such as directional couplers (DCs) and Mach–Zehnder interferometers.[19][20][21] These components were then be used to fabricate more complicated circuits such as multi-photon entangling gates as well as core components used for fully reconfigurable quantum circuits,[22] where reconfigurability can achieved using both thermal and electro-optic phase shifters.[23][24][25][26]

Another area of research in which integrated optics will prove pivotal in its development is Quantum communication and has been marked by extensive experimental development demonstrating, for example, quantum key distribution (QKD),[27][28] quantum teleportation,[29] quantum relays based on entanglement swapping, and quantum repeaters.

Since the birth of integrated quantum optics experiments have ranged from technological demonstrations, for example integrated sources[30][31][32] and integrated detectors,[33] to fundamental tests of nature,[13][34] new methods for quantum key distribution,[35] and the generation of new quantum states of light.[36] It has also been demonstrated that a single integrated device is sufficient to implement the full field of linear optics.[22][37][38]

As the field has progressed new quantum algorithms have been developed which provide short and long term routes towards the demonstration of the superiority of quantum computers over their classical counterparts. Cluster state computation is now generally accepted as the approach that will be used to develop a fully fledged quantum computer.[39] Whilst development of quantum computer will require the synthesis of many different aspects of integrated optics, boson sampling[40] seeks to demonstrate the power of quantum computation via technologies readily available and is therefore a very promising near term algorithm to doing so. In fact shortly after its proposal there were several small scale experimental demonstrations of the boson sampling algorithm[41][42][43][44]

Materials

Control over photons can be achieved with integrated devices that can be realised in different material platforms such as silica, silicon, gallium arsenide, lithium niobate and indium phosphide and silicon nitride.

Silica

Two methods for using silica:

  1. Flame hydrolosis and another method - more like traditional lithography etching and depositing different materials.

2. Direct write - only uses single material and laser (use computer controlled laser to damage the glass and user lateral motion and focus to write paths with required refractive indices to produce waveguides). This method has the benefit of not needing a clean room. This is the most common method now for making silica waveguides, and is excellent for rapid prototyping. It has also been used in several demonstrations of topological photonics.[45]

The main challenges of the silica platform are the low refractive index contrast, the lack of active tunability post fabrication (as opposed to all the other platforms) and the difficulty of mass production with reproducibility and high yield due to the serial nature of the inscription process. Recent work has shown the possibility of dynamically reconfiguring these silica devices using heaters, albeit requiring moderately high power.[46]

Silicon

A big advantage of using silicon is that the circuits can be tuned actively using integrated thermal microheaters or p-i-n modulators, after the devices have been fabricated. The other big benefit of silicon is its compatibility with CMOS technology, which allows leveraging the mature fabrication infrastructure of the semiconductor electronics industry. The structures are different from modern electronic ones, however, they are readily scalable. Silicon has a really high refractive index of ~3.5 at the 1550 nm wavelength commonly used in optical telecommunications. It also makes a nice interface with glass which has lower refractive index of ~1.44. This allows waveguides made form silicon and glass to be small and have tight bends, which allows you to make denser systems. Large silicon-on-insulator (SOI) wafers up to 300 mm in diameter can be commercially obtained, making the technology reproducible.

Lithium Niobate

Fabrication

Conventional fabrication technologies are based on photolithographic processes, which enable strong miniaturization and mass production. In quantum optics applications a relevant role has been played also by the direct inscription of the circuits by femtosecond lasers[47] or UV lasers;[19] these are serial fabrication technologies, which are particularly convenient for research purposes, where novel designs have to be tested with rapid fabrication turnaround.

However, laser-written waveguides are not suitable for mass production and miniaturization due to the serial nature of the inscription technique, and due to the very low refractive index contrast allowed by these materials, as opposed to silicon photonic circuits. Femtosecond laser written quantum circuits have proven particularly suited for the manipulation of the polarization degree of freedom[48][49][50][51] and for building circuits with innovative three-dimensional design.[52][53][54][55] Quantum information is encoded on-chip in either the path, polarisation, time bin or frequency state of the photon, and manipulated using active integrated components in a compact and stable manner.

Components

Waveguides

Channels

Directional coupler

Produces a fixed phase

Active components

  • Thermo-optic effect – slowly varying changes
  • Electro-optic effect - Injecting carriers in PN. Can’t be done in QM domain yet

Light sources

Detectors

gollark: Atmospheric bee concentrations are really high nowadays.
gollark: If only the osmarks.tk™ secondary server ran on bees instead of electrons.
gollark: C is HIGHLY memory-unsafe.
gollark: <:bees:724389994663247974> → your computer
gollark: 🐝 you, Rust is better than C for VARIOUS applications.

See also

References

  1. Politi, A; Matthews, J.C.F; Thompson, M; O'Brien, J.L. (2009). "Integrated Quantum Photonics". IEEE Journal of Selected Topics in Quantum Electronics. 15 (6): 1673–1684. Bibcode:2009IJSTQ..15.1673P. doi:10.1109/JSTQE.2009.2026060.
  2. O'Brien, Jeremy L.; Furusawa, Akira; Vuckovic, Jelena (2009). "Photonic quantum technologies". Nature Photonics. 3 (12): 687–695. arXiv:1003.3928. Bibcode:2009NaPho...3..687O. doi:10.1038/nphoton.2009.229.
  3. Ladd, T. D.; Jelezko, F.; Laflamme, R.; Nakamura, Y.; Monroe, C.; O'Brien, J. L. (2010). "Quantum computers". Nature. 464 (7285): 45–53. arXiv:1009.2267. Bibcode:2010Natur.464...45L. doi:10.1038/nature08812. PMID 20203602.
  4. Aspuru-Guzik, Alán; Walther, Philip (2012). "Photonic quantum simulators". Nature Physics (Submitted manuscript). 8 (4): 285–291. Bibcode:2012NatPh...8..285A. doi:10.1038/nphys2253.
  5. Georgescu, I. M.; Ashhab, S.; Nori, F. (2014). "Quantum Simulation". Rev. Mod. Phys. 86 (1): 153–185. arXiv:1308.6253. Bibcode:2014RvMP...86..153G. doi:10.1103/RevModPhys.86.153.
  6. Perzzo, Alberto; et al. (2014). "A variational eigenvalue solver on a photonic quantum processor". Nat Commun. 5: 4213. arXiv:1304.3061. Bibcode:2014NatCo...5.4213P. doi:10.1038/ncomms5213. PMC 4124861. PMID 25055053.
  7. Lodahl, Peter (2018). "Quantum-dot based photonic quantum networks". Quantum Science and Technology. 3 (1): 013001. arXiv:1707.02094. Bibcode:2018QS&T....3a3001L. doi:10.1088/2058-9565/aa91bb.
  8. Peruzzo, Alberto; et al. (2010). "Quantum Walks of Correlated Photons". Science. 329 (5998): 1500–1503. arXiv:1006.4764. Bibcode:2010Sci...329.1500P. doi:10.1126/science.1193515. PMID 20847264.
  9. Crespi, Andrea; et al. (2013). "Anderson localization of entangled photons in an integrated quantum walk". Nature Photonics. 7 (4): 322–328. arXiv:1304.1012. Bibcode:2013NaPho...7..322C. doi:10.1038/nphoton.2013.26.
  10. Pearsall, Thomas (2017). Quantum Photonics. Graduate Texts in Physics. Springer. doi:10.1007/978-3-319-55144-9. ISBN 9783319551425.
  11. Aspect, A.; Grainger, P.; Gerard, R (1981). "Experimental Tests of Realistic Local Theories via Bell's Theorem". Phys. Rev. Lett. 47 (7): 460–463. Bibcode:1981PhRvL..47..460A. doi:10.1103/PhysRevLett.47.460.
  12. Freedman, S. J.; Clauser, J. F. (1972). "Experimental Test of Local Hidden-Variable Theories" (PDF). Phys. Rev. Lett. 28 (14): 938–941. Bibcode:1972PhRvL..28..938F. doi:10.1103/PhysRevLett.28.938.
  13. Shadbolt, Peter; Matthews, Jonathan C. F.; Laing, Anthony; O'Brien, Jeremy L. (2014). "Testing foundations of quantum mechanics with photons". Nat Phys. 10 (4): 278–286. arXiv:1501.03713. Bibcode:2014NatPh..10..278S. doi:10.1038/nphys2931.
  14. Knill, E.; Laflamme, R.; Milburn, G. J. (January 2001). "A scheme for efficient quantum computation with linear optics". Nature. 409 (6816): 46–52. Bibcode:2001Natur.409...46K. doi:10.1038/35051009. PMID 11343107.
  15. O'Brien, J. L.; Pryde, G. J.; White, A. G.; Ralph, T. C.; Branning, D. (November 2003). "Demonstration of an all-optical quantum controlled-NOT gate". Nature. 426 (6964): 264–267. arXiv:quant-ph/0403062. Bibcode:2003Natur.426..264O. doi:10.1038/nature02054. PMID 14628045.
  16. Pittman, T. B.; Fitch, M. J.; Jacobs, B. C; Franson, J. D. (2003-09-26). "Experimental controlled-NOT logic gate for single photons in the coincidence basis". Physical Review A. 68 (3): 032316. arXiv:quant-ph/0303095. Bibcode:2003PhRvA..68c2316P. doi:10.1103/PhysRevA.68.032316.
  17. Okamoto, Ryo; O'Brien, Jeremy L.; Hofmann, Holger F.; Takeuchi, Shigeki (2011-06-21). "Realization of a Knill-Laflamme-Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities". Proceedings of the National Academy of Sciences. 108 (25): 10067–10071. arXiv:1006.4743. Bibcode:2011PNAS..10810067O. doi:10.1073/pnas.1018839108. ISSN 0027-8424. PMC 3121828. PMID 21646543.
  18. Tanzilli, S.; Martin, A.; Kaiser, F.; De Micheli, M.p.; Alibart, O.; Ostrowsky, D.b. (2012-01-02). "On the genesis and evolution of Integrated Quantum Optics". Laser & Photonics Reviews. 6 (1): 115–143. arXiv:1108.3162. Bibcode:2012LPRv....6..115T. doi:10.1002/lpor.201100010. ISSN 1863-8899.
  19. Smith, Brian J.; Kundys, Dmytro; Thomas-Peter, Nicholas; Smith, P. G. R.; Walmsley, I. A. (22 July 2009). "Phase-controlled integrated photonic quantum circuits". Optics Express. 17 (16): 13516–25. arXiv:0905.2933. Bibcode:2009OExpr..1713516S. doi:10.1364/OE.17.013516. PMID 19654759.
  20. Politi, A; et al. (2008). "Silica-on-Silicon Waveguide Quantum Circuits". Science. 320 (5878): 646–649. arXiv:0802.0136. Bibcode:2008Sci...320..646P. doi:10.1126/science.1155441. PMID 18369104.
  21. Laing, Anthony; et al. (2010). "High-fidelity operation of quantum photonic circuits". Applied Physics Letters. 97 (21): 211109. arXiv:1004.0326. Bibcode:2010ApPhL..97u1109L. doi:10.1063/1.3497087.
  22. Carolan, J; et al. (2015). "Universal Linear Optics". Science. 349 (6249): 711–716. arXiv:1505.01182. doi:10.1126/science.aab3642. PMID 26160375.
  23. Miya, T (2000). "Silica-based planar lightwave circuits: passive and thermally active devices". IEEE Journal of Selected Topics in Quantum Electronics. 6 (1): 38–45. Bibcode:2000IJSTQ...6...38M. doi:10.1109/2944.826871.
  24. Wang, J; et al. (2014). "Gallium Arsenide (GaAs) Quantum Photonic Waveguide Circuits". Optics Communications. 327: 49–55. arXiv:1403.2635. Bibcode:2014OptCo.327...49W. doi:10.1016/j.optcom.2014.02.040.
  25. Chaboyer, Zachary; et al. (2015). "Tunable quantum interference in a 3D integrated circuit". Scientific Reports. 5: 9601. arXiv:1409.4908. Bibcode:2015NatSR...5E9601C. doi:10.1038/srep09601. PMC 5386201. PMID 25915830.
  26. Flamini, Fulvio; et al. (2015). "Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining". Light: Science & Applications. 4 (11): e354. arXiv:1512.04330. Bibcode:2015LSA.....4E.354F. doi:10.1038/lsa.2015.127.
  27. Zhang, P. (2014-01-01). "Reference-Frame-Independent Quantum-Key-Distribution Server with a Telecom Tether for an On-Chip Client". Physical Review Letters. 112 (13): 130501. arXiv:1308.3436. Bibcode:2014PhRvL.112m0501Z. doi:10.1103/PhysRevLett.112.130501. PMID 24745397.
  28. Sibson, Philip; Erven, Chris; Godfrey, Mark; Miki, Shigehito; Yamashita, Taro; Fujiwara, Mikio; Sasaki, Masahide; Terai, Hirotaka; Tanner, Michael G. (2015-09-02). "Chip-based Quantum Key Distribution". Quantum Physics. arXiv:1509.00768. Bibcode:2015arXiv150900768S.
  29. Metcalf, Benjamin J.; Spring, Justin B.; Humphreys, Peter C.; Thomas-Peter, Nicholas; Barbieri, Marco; Kolthammer, W. Steven; Jin, Xian-Min; Langford, Nathan K.; Kundys, Dmytro (2014). "Quantum teleportation on a photonic chip". Nature Photonics. 8 (10): 770–774. arXiv:1409.4267. Bibcode:2014NaPho...8..770M. doi:10.1038/nphoton.2014.217.
  30. Silverstone, J. W.; Bonneau, D.; Ohira, K.; Suzuki, N.; Yoshida, H.; Iizuka, N.; Ezaki, M.; Natarajan, C. M.; Tanner, M. G. (2014). "On-chip quantum interference between silicon photon-pair sources". Nature Photonics. 8 (2): 104–108. arXiv:1304.1490. Bibcode:2014NaPho...8..104S. doi:10.1038/nphoton.2013.339.
  31. Spring, Justin B.; Salter, Patrick S.; Metcalf, Benjamin J.; Humphreys, Peter C.; Moore, Merritt; Thomas-Peter, Nicholas; Barbieri, Marco; Jin, Xian-Min; Langford, Nathan K. (2013-06-03). "On-chip low loss heralded source of pure single photons". Optics Express. 21 (11): 13522–32. arXiv:1304.7781. Bibcode:2013OExpr..2113522S. doi:10.1364/oe.21.013522. PMID 23736605.
  32. Dousse, Adrien; et al. (2010). "Ultrabright source of entangled photon pairs". Nature. 466 (7303): 217–220. Bibcode:2010Natur.466..217D. doi:10.1038/nature09148. PMID 20613838.
  33. Sahin, D.; et al. (2015). "Waveguide Nanowire Superconducting Single-Photon Detectors Fabricated on GaAs and the Study of Their Optical Properties". IEEE Journal of Selected Topics in Quantum Electronics. 21 (2): 2359539. Bibcode:2015IJSTQ..2159539S. doi:10.1109/JSTQE.2014.2359539.
  34. Peruzzo, Alberto; Shadbolt, Peter; Brunner, Nicolas; Popescu, Sandu; O'Brien, Jeremy L. (2012). "A Quantum Delayed-Choice Experiment". Science. 338 (6107): 634–637. arXiv:1205.4926. Bibcode:2012Sci...338..634P. doi:10.1126/science.1226719. PMID 23118183.
  35. Sibson, P.; et al. (2015). "Chip-based Quantum Key Distribution". arXiv:1509.00768 [quant-ph].
  36. Orieux, Adeline; et al. (2015). "Experimental Generation of Robust Entanglement from Classical Correlations via Local Dissipation". Phys. Rev. Lett. 115 (16): 5. arXiv:1503.05084. Bibcode:2015PhRvL.115p0503O. doi:10.1103/PhysRevLett.115.160503. PMID 26550856.
  37. Harris, N. C.; et al. (2015). "Bosonic transport simulations in a large-scale programmable nanophotonic processor". Nature Photonics. 11 (7): 447–452. arXiv:1507.03406. doi:10.1038/nphoton.2017.95.
  38. Reck, Michael; Zeilinger, Anton; Bernstein, Herbert J.; Bertani, Philip (1994-07-04). "Experimental realization of any discrete unitary operator". Physical Review Letters. 73 (1): 58–61. Bibcode:1994PhRvL..73...58R. doi:10.1103/PhysRevLett.73.58. PMID 10056719.
  39. H. J. Briegel & R. Raussendorf (2001). "Persistent Entanglement in arrays of Interacting Particles". Physical Review Letters. 86 (5): 910–3. arXiv:quant-ph/0004051. Bibcode:2001PhRvL..86..910B. doi:10.1103/PhysRevLett.86.910. PMID 11177971.
  40. Aaronson, Scott; Arkhipov, Alex. "The Computational Complexity of Linear Optics" (PDF). scottaaronson.
  41. Broome, Matthew A.; Fedrizzi, Alessandro; Rahimi-Keshari, Saleh; Dove, Justin; Aaronson, Scott; Ralph, Timothy C.; White, Andrew G. (2013-02-15). "Photonic Boson Sampling in a Tunable Circuit". Science. 339 (6121): 794–798. arXiv:1212.2234. Bibcode:2013Sci...339..794B. doi:10.1126/science.1231440. hdl:1721.1/85873. ISSN 0036-8075. PMID 23258411.
  42. Spring, Justin B.; Metcalf, Benjamin J.; Humphreys, Peter C.; Kolthammer, W. Steven; Jin, Xian-Min; Barbieri, Marco; Datta, Animesh; Thomas-Peter, Nicholas; Langford, Nathan K. (2013-02-15). "Boson Sampling on a Photonic Chip". Science. 339 (6121): 798–801. arXiv:1212.2622. Bibcode:2013Sci...339..798S. doi:10.1126/science.1231692. ISSN 0036-8075. PMID 23258407.
  43. Tillman, M; et al. (2013). "Experimental boson sampling". Nat Photonics. 7 (7): 540–544. arXiv:1212.2240. Bibcode:2013NaPho...7..540T. doi:10.1038/nphoton.2013.102.
  44. Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Brod, Daniel J.; Galvão, Ernesto F.; Spagnolo, Nicolò; Vitelli, Chiara; Maiorino, Enrico; Mataloni, Paolo; Sciarrino, Fabio (2013). "Integrated multimode interferometers with arbitrary designs for photonic boson sampling". Nature Photonics. 7 (7): 545–549. arXiv:1212.2783. Bibcode:2013NaPho...7..545C. doi:10.1038/nphoton.2013.112.
  45. Ozawa, Tomoki; Price, Hannah M.; Amo, Alberto; Goldman, Nathan; Hafezi, Mohammad; Lu, Ling; Rechtsman, Mikael; Schuster, David; Simon, Jonathan (2019). "Topological Photonics". Reviews of Modern Physics. 91: 015006. arXiv:1802.04173. doi:10.1103/RevModPhys.91.015006.
  46. Flamini, Fulvio; Magrini, Lorenzo; Rab, Adil S; Spagnolo, Nicolò; D'Ambrosio, Vincenzo; Mataloni, Paolo; Sciarrino, Fabio; Zandrini, Tommaso; Crespi, Andrea (November 2015). "Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining". Light: Science & Applications. 4 (11): e354. arXiv:1512.04330. Bibcode:2015LSA.....4E.354F. doi:10.1038/lsa.2015.127. ISSN 2047-7538.
  47. Marshall, Graham D.; Politi, Alberto; Matthews, Jonathan C. F.; Dekker, Peter; Ams, Martin; Withford, Michael J.; O'Brien, Jeremy L. (9 July 2009). "Laser written waveguide photonic quantum circuits". Optics Express. 17 (15): 12546–54. arXiv:0902.4357. Bibcode:2009OExpr..1712546M. doi:10.1364/OE.17.012546. PMID 19654657.
  48. Sansoni, Linda; Sciarrino, Fabio; Vallone, Giuseppe; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto (10 November 2010). "Polarization Entangled State Measurement on a Chip". Physical Review Letters. 105 (20): 200503. arXiv:1009.2426. Bibcode:2010PhRvL.105t0503S. doi:10.1103/PhysRevLett.105.200503. PMID 21231214.
  49. Crespi, Andrea; et al. (2011). "Integrated photonic quantum gates for polarization qubits". Nature Communications. 2: 566. arXiv:1105.1454. Bibcode:2011NatCo...2..566C. doi:10.1038/ncomms1570. PMC 3482629. PMID 22127062.
  50. Corrielli, Giacomo; et al. (2014). "Rotated waveplates in integrated waveguide optics". Nature Communications. 5: 4249. Bibcode:2014NatCo...5.4249C. doi:10.1038/ncomms5249. PMC 4083439. PMID 24963757.
  51. Heilmann, Renè; et al. (2014). "Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits". Scientific Reports. 4: 4118. Bibcode:2014NatSR...4E4118H. doi:10.1038/srep04118. PMC 3927208. PMID 24534893.
  52. Crespi, Andrea; Sansoni, Linda; Della Valle, Giuseppe; Ciamei, Alessio; Ramponi, Roberta; Sciarrino, Fabio; Mataloni, Paolo; Longhi, Stefano; Osellame, Roberto (2 March 2015). "Particle Statistics Affects Quantum Decay and Fano Interference". Physical Review Letters. 114 (9): 090201. arXiv:1409.8081. Bibcode:2015PhRvL.114i0201C. doi:10.1103/PhysRevLett.114.090201. PMID 25793783.
  53. Gräfe, Markus; Heilmann, René; Perez-Leija, Armando; Keil, Robert; Dreisow, Felix; Heinrich, Matthias; Moya-Cessa, Hector; Nolte, Stefan; Christodoulides, Demetrios N.; Szameit, Alexander (31 August 2014). "On-chip generation of high-order single-photon W-states". Nature Photonics. 8 (10): 791–795. Bibcode:2014NaPho...8..791G. doi:10.1038/nphoton.2014.204.
  54. Spagnolo, Nicolò; et al. (2013). "Three-photon bosonic coalescence in an integrated tritter". Nature Communications. 4: 1606. arXiv:1210.6935. Bibcode:2013NatCo...4.1606S. doi:10.1038/ncomms2616. PMID 23511471.
  55. Crespi, Andrea; et al. (2016). "Suppression law of quantum states in a 3D photonic fast Fourier transform chip". Nature Communications. 7: 10469. Bibcode:2016NatCo...710469C. doi:10.1038/ncomms10469. PMC 4742850. PMID 26843135.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.