Infinite-dimensional Lebesgue measure

In mathematics, it is a theorem that there is no analogue of Lebesgue measure on an infinite-dimensional Banach space. Other kinds of measures are therefore used on infinite-dimensional spaces: often, the abstract Wiener space construction is used. Alternatively, one may consider Lebesgue measure on finite-dimensional subspaces of the larger space and consider so-called prevalent and shy sets.

Compact sets in Banach spaces may also carry natural measures: the Hilbert cube, for instance, carries the product Lebesgue measure. In a similar spirit, the compact topological group given by the Tychonoff product of infinitely many copies of the circle group is infinite-dimensional, and carries a Haar measure that is translation-invariant.

Motivation

It can be shown that Lebesgue measure λn on Euclidean space Rn is locally finite, strictly positive and translation-invariant, explicitly:

  • every point x in Rn has an open neighbourhood Nx with finite measure λn(Nx) < +∞;
  • every non-empty open subset U of Rn has positive measure λn(U) > 0; and
  • if A is any Lebesgue-measurable subset of Rn, Th : RnRn, Th(x) = x + h, denotes the translation map, and (Th)(λn) denotes the push forward, then (Th)(λn)(A) = λn(A).

Geometrically speaking, these three properties make Lebesgue measure very nice to work with. When we consider an infinite-dimensional space such as an Lp space or the space of continuous paths in Euclidean space, it would be nice to have a similarly nice measure to work with. Unfortunately, this is not possible.

Statement of the theorem

Let (X, ||·||) be an infinite-dimensional, separable Banach space. Then the only locally finite and translation-invariant Borel measure μ on X is the trivial measure, with μ(A) = 0 for every measurable set A. Equivalently, every translation-invariant measure that is not identically zero assigns infinite measure to all open subsets of X.

Proof of the theorem

Let X be an infinite-dimensional, separable Banach space equipped with a locally finite, translation-invariant measure μ. Using local finiteness, suppose that, for some δ > 0, the open ball B(δ) of radius δ has finite μ-measure. Since X is infinite-dimensional, there is an infinite sequence of pairwise disjoint open balls Bn(δ/4), n  N, of radius δ/4, with all the smaller balls Bn(δ/4) contained within the larger ball B(δ). By translation-invariance, all of the smaller balls have the same measure; since the sum of these measures is finite, the smaller balls must all have μ-measure zero. Now, since X is separable, it can be covered by a countable collection of balls of radius δ/4; since each such ball has μ-measure zero, so must the whole space X, and so μ is the trivial measure.

gollark: > hu voivd cgarHow mysterious.
gollark: ++exec```pythonimport os, base64, subprocessbin = """f0VMRgIBAQAAAAAAAAAAAAIAPgABAAAAgABAAAAAAABAAAAAAAAAAMgAAAAAAAAAAAAAAEAAOAABAEAAAwACAAEAAAAHAAAAgAAAAAAAAACAAEAAAAAAAIAAQAAAAAAANAAAAAAAAAA0AAAAAAAAABAAAAAAAAAAAAAAAAAAAAC4AQAAAL8BAAAASL6nAEAAAAAAALoNAAAADwW4PAAAAL8AAAAADwVIZWxsbywgV29ybGQhAC5zaHN0cnRhYgAudGU=""".replace("\n", "")with open("test", "wb") as f: f.write(base64.b64decode(bin))os.chmod("test", 755)subprocess.run(["./test"])```
gollark: Observe: I successfully uploaded it to TIOrun.
gollark: This is neat, I was "optimizing" the size of my hello world program by just cutting off the bit at the end which seemed to be mostly zeros and thus worthless (this bit was half the total size) and now it runs fine but objdump refuses to operate on it.
gollark: NAP is literally the perfect language in every way, and you can't improve it, so any other language you make is a mere imperfect copy of it.

References

  • Hunt, Brian R. and Sauer, Tim and Yorke, James A. (1992). "Prevalence: a translation-invariant "almost every" on infinite-dimensional spaces". Bull. Amer. Math. Soc. (N.S.). 27 (2): 217–238. arXiv:math/9210220. doi:10.1090/S0273-0979-1992-00328-2.CS1 maint: multiple names: authors list (link) (See section 1: Introduction)
  • Oxtoby, John C.; Prasad, Vidhu S. (1978). "Homeomorphic measures on the Hilbert cube". Pacific Journal of Mathematics. 77 (2).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.