Imaginary element

In mathematical model theory, an imaginary element of a structure is roughly a definable equivalence class. These were introduced by Shelah (1990), and elimination of imaginaries was introduced by Poizat (1983)

Definitions

  • M is a model of some theory.
  • x and y stand for n-tuples of variables, for some natural number n.
  • An equivalence formula is a formula φ(x,y) that is a symmetric and transitive relation. Its domain is the set of elements a of Mn such that φ(a,a); it is an equivalence relation on its domain.
  • An imaginary element a/φ of M is an equivalence formula φ together with an equivalence class a.
  • M has elimination of imaginaries if for every imaginary element a/φ there is a formula θ(x,y) such that there is a unique tuple b so that the equivalence class of a consists of the tuples x such that θ(x,b)
  • A model has uniform elimination of imaginaries if the formula θ can be chosen independently of a.
  • A theory has elimination of imaginaries if every model does (and similarly for uniform elimination).

Examples

  • ZFC set theory has elimination of imaginaries.
  • Peano arithmetic has uniform elimination of imaginaries.
  • A vector space of dimension at least 2 over a finite field with at least 3 elements does not have elimination of imaginaries.
gollark: I mostly store my notes on computers, which have ridiculously huge capacity compared to paper.
gollark: I feel like that could end up being partly obsoleted by 3D printing.
gollark: There are even something like 30 on the awesome-selfhosted list, which is just web-based selfhosted ones.
gollark: There are a *lot* of RSS readers. I use Miniflux, which is web-based.
gollark: It's better for newsfeed-type things than email, since you can just host an XML file instead of mucking with getting your server to send emails somehow, and it's "pull" rather than "push" meaning you don't have to rely on the other end to unsubscribe you.

See also

References

  • Hodges, Wilfrid (1993), Model theory, Cambridge University Press, ISBN 978-0-521-30442-9
  • Poizat, Bruno (1983), "Une théorie de Galois imaginaire. [An imaginary Galois theory]", Journal of Symbolic Logic, 48 (4): 1151–1170, doi:10.2307/2273680, JSTOR 2273680, MR 0727805
  • Shelah, Saharon (1990) [1978], Classification theory and the number of nonisomorphic models, Studies in Logic and the Foundations of Mathematics (2nd ed.), Elsevier, ISBN 978-0-444-70260-9
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.