I-spline
In the mathematical subfield of numerical analysis, an I-spline[1][2] is a monotone spline function.
Definition
A family of I-spline functions of degree k with n free parameters is defined in terms of the M-splines Mi(x|k, t)
where L is the lower limit of the domain of the splines.
Since M-splines are non-negative, I-splines are monotonically non-decreasing.
Computation
Let j be the index such that tj ≤ x < tj+1. Then Ii(x|k, t) is zero if i > j, and equals one if j − k + 1 > i. Otherwise,
Applications
I-splines can be used as basis splines for regression analysis and data transformation when monotonicity is desired (constraining the regression coefficients to be non-negative for a non-decreasing fit, and non-positive for a non-increasing fit).
gollark: ++exec```phpddg! bee```
gollark: ABR actually *does* respond to bots, which may cause problems.
gollark: Due to reasons.
gollark: We have 10:1 now.
gollark: Not really, most bots are programmed not to.
References
- Curry, H.B.; Schoenberg, I.J. (1966). "On Polya frequency functions. IV. The fundamental spline functions and their limits". J. Analyse Math. 17: 71–107. doi:10.1007/BF02788653.
- Ramsay, J.O. (1988). "Monotone Regression Splines in Action". Statistical Science. 3 (4): 425–441. doi:10.1214/ss/1177012761. JSTOR 2245395.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.