Hyper-Wiener index

In chemical graph theory, the hyper-Wiener index or hyper-Wiener number is a topological index of a molecule, used in biochemistry. The hyper-Wiener index is a generalization introduced by Milan Randić [1] of the concept of the Wiener index, introduced by Harry Wiener. The hyper-Wiener index of a connected graph G is defined by

where d(u,v) is the distance between vertex u and v. Hyper-Wiener index as topological index assigned to G = (V,E) is based on the distance function which is invariant under the action of the automorphism group of G.

Example

One-pentagonal carbon nanocone which is an infinite symmetric graph, consists of one pentagon as its core surrounded by layers of hexagons. If there are n layers, then the graph of the molecules is denoted by Gn. we have the following explicit formula for hyper-Wiener index of one-pentagonal carbon nanocone,[2]

pentagonal-carbon-nanocone
gollark: Often, you just want to screenshot a region/window, but now they're adding a fancier, probably more convoluted one.
gollark: Again, a more complicated one doesn't mean better.
gollark: In any case, you seem to be interested in keeping the old one, so...
gollark: Doesn't mean "better",
gollark: *removing it and adding an overcomplicated alternative

References

  1. Randic, M. (1993), "Novel molecular descriptor for structure—property studies", Chemical Physics Letters, 211 (10): 478–483, Bibcode:1993CPL...211..478R, doi:10.1016/0009-2614(93)87094-J.
  2. Darafsheh, M. R.; Khalifeh, M. H.; Jolany, H. (2013), "The Hyper-Wiener Index of One-pentagonal Carbon Nanocone", Current Nanoscience, 9 (4): 557–560, arXiv:1212.4411, doi:10.2174/15734137113090990061.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.