Horn analyzer

A horn analyzer is an test instrument dedicated to determine the resonance and anti-resonance frequencies of ultrasonic parts such as transducers, converters, horns/sonotrodes and acoustic stacks, which are used for ultrasonic welding, cutting, cleaning, medical and industrial applications. In addition, digital horn analyzers are able to determine the electrical impedance of piezoelectric materials, the Butterworth-Van Dyke (BVD)equivalent circuit and the mechanical quality fator (Qm).

Horn analyzer test results of a 20-kHz welding converter. The frequency “F” corresponds to the operational anti-resonance frequency, and the impedance “Z” to the electrical impedance modulus in the anti-resonance frequency.
A digital horn analyzer with power ultrasonic parts.

Principles of operation

A digital horn analyzer performs a frequency sweep while monitoring the current flowing through the device under test, in order to detect the resonance and anti-resonance frequencies and their respective electrical impedances. The anti-resonance is the frequency at which the current encounters maximum impedance, and the resonance is the frequency of minimum impedance.

In analog microampere-meter-based horn analyzers, the user identifies the frequencies manually, using the meter to detect the points of minimum and maximum current while sweeping the driving frequency. In digital analyzers, frequency detection and impedance calculation are performed automatically through embedded software.

Impedance analyzers can be used as advanced horn analyzers, but are not usually a cost-effective alternative for everyday industrial demands, due to their higher cost, larger size and greater complexity.

Applications

Horn analyzers are widely used by manufacturers of power ultrasonic equipment, to allow the proper tuning and quality control of sonotrodes, transducers and boosters.[1] Horn analyzers are also employed by end-users for preventive and corrective maintenance.

Tuning

Accurate frequency tuning is indispensable for the proper use of power ultrasonic equipment.[2] In an acoustic set, the parts act like narrow pass-band filters, and their central frequencies should be perfectly aligned to avoid heating losses and to improve energy transmission. Horn analyzers can be tuned to the desired frequency using a lathe or milling machine by adjusting the part dimensions to the desired value.[3]

gollark: That would still not be very good.
gollark: Not only is detecting use of a template probably not easy, but you would need to check *every template* against *every meme* posted on Reddit, which would be *hard*.
gollark: The old system was not very good.
gollark: Well, it might be possible, just very hard.
gollark: How would you get profit, I mean? Just "invest, and there's no competition, and after a few hours you get money"?

References

  1. Devine, J. (2011). Ultrasonic Plastic Welding Basics. Sonobond Ultrasonics Inc.
  2. Prokic, M. (2004). Piezoelectric Transducer Modelling and Characterization. MP Interconsulting. 269p.
  3. Ultrasonic assembly of thermoplastic mounding and semi-finished products: Recommendations on methods, construction and applications. ZVEI – Zentralverband Elektrotechnik- und Elektronik Industrie e.V. Fachverband Elektroschweissgeräte.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.