Hodge–Tate module
In mathematics, a Hodge–Tate module is an analogue of a Hodge structure over p-adic fields. Serre (1967) introduced and named Hodge–Tate structures using the results of Tate (1967) on p-divisible groups.
Definition
Suppose that G is the absolute Galois group of a p-adic field K. Then G has a canonical cyclotomic character χ given by its action on the pth power roots of unity. Let C be the completion of the algebraic closure of K. Then a finite-dimensional vector space over C with a semi-linear action of the Galois group G is said to be of Hodge–Tate type if it is generated by the eigenvectors of integral powers of χ.
gollark: There isn't a very significant difference.
gollark: Which is your computer, which is… fairly trustworthy if you aren't running something guaranteed to spy on you (Chrome), and someone's servers, which aren't as much but at least might not be logging things in much detail or for long.
gollark: They answer warrants and such, because they have to.
gollark: Passcodes mostly have something like 6 digits, so very amenable to brute force if you can get the data somewhere that's doable. TLS uses 128-bit or 256-bit keys, which are absolutely not.
gollark: They have exploits to get around that.
See also
References
- Faltings, Gerd (1988), "p-adic Hodge theory", Journal of the American Mathematical Society, 1 (1): 255–299, doi:10.2307/1990970, ISSN 0894-0347, JSTOR 1990970, MR 0924705
- Serre, Jean-Pierre (1967), "Sur les groupes de Galois attachés aux groupes p-divisibles", in Springer, Tonny A. (ed.), Proceedings of a Conference on Local Fields (Driebergen, 1966), Berlin, New York: Springer-Verlag, pp. 118–131, ISBN 978-3-540-03953-2, MR 0242839
- Tate, John T. (1967), "p-divisible groups.", in Springer, Tonny A. (ed.), Proc. Conf. Local Fields (Driebergen, 1966), Berlin, New York: Springer-Verlag, MR 0231827
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.