Hodge–Tate module
In mathematics, a Hodge–Tate module is an analogue of a Hodge structure over p-adic fields. Serre (1967) introduced and named Hodge–Tate structures using the results of Tate (1967) on p-divisible groups.
Definition
Suppose that G is the absolute Galois group of a p-adic field K. Then G has a canonical cyclotomic character χ given by its action on the pth power roots of unity. Let C be the completion of the algebraic closure of K. Then a finite-dimensional vector space over C with a semi-linear action of the Galois group G is said to be of Hodge–Tate type if it is generated by the eigenvectors of integral powers of χ.
gollark: Done! The computational cuboid chamber is now at 4 K.
gollark: Deploying liquid helium …
gollark: It is not capable of this and would not if it was.
gollark: The PIERB has ruled that GAfterlife™ policy forbids this.
gollark: Surprisingly, no.
See also
References
- Faltings, Gerd (1988), "p-adic Hodge theory", Journal of the American Mathematical Society, 1 (1): 255–299, doi:10.2307/1990970, ISSN 0894-0347, JSTOR 1990970, MR 0924705
- Serre, Jean-Pierre (1967), "Sur les groupes de Galois attachés aux groupes p-divisibles", in Springer, Tonny A. (ed.), Proceedings of a Conference on Local Fields (Driebergen, 1966), Berlin, New York: Springer-Verlag, pp. 118–131, ISBN 978-3-540-03953-2, MR 0242839
- Tate, John T. (1967), "p-divisible groups.", in Springer, Tonny A. (ed.), Proc. Conf. Local Fields (Driebergen, 1966), Berlin, New York: Springer-Verlag, MR 0231827
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.