Hilbert modular form

In mathematics, a Hilbert modular form is a generalization of modular forms to functions of two or more variables. It is a (complex) analytic function on the m-fold product of upper half-planes satisfying a certain kind of functional equation.

Definition

Let F be a totally real number field of degree m over the rational field. Let be the real embeddings of F. Through them we have a map

Let be the ring of integers of F. The group is called the full Hilbert modular group. For every element , there is a group action of defined by

For

define:

A Hilbert modular form of weight is an analytic function on such that for every

Unlike the modular form case, no extra condition is needed for the cusps because of Koecher's principle.

History

These modular forms, for real quadratic fields, were first treated in the 1901 Göttingen University Habilitationssschrift of Otto Blumenthal. There he mentions that David Hilbert had considered them initially in work from 1893-4, which remained unpublished. Blumenthal's work was published in 1903. For this reason Hilbert modular forms are now often called Hilbert-Blumenthal modular forms.

The theory remained dormant for some decades; Erich Hecke appealed to it in his early work, but major interest in Hilbert modular forms awaited the development of complex manifold theory.

gollark: The documentation implied I did, and I thought you might know if I had to due to your fossil use.
gollark: f.gh0.pw?
gollark: Great!
gollark: Hmm, ubq, you use fossil, right? MUST I run a separate fossil server per repository?
gollark: BUT you have to renew it within a 14-day window || 🐝.

See also

References

  • Jan H. Bruinier: Hilbert modular forms and their applications.
  • Paul B. Garrett: Holomorphic Hilbert Modular Forms. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1990. ISBN 0-534-10344-8
  • Eberhard Freitag: Hilbert Modular Forms. Springer-Verlag. ISBN 0-387-50586-5
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.