Hexagonal tiling-triangular tiling honeycomb

In the geometry of hyperbolic 3-space, the hexagonal tiling-triangular tiling honeycomb is a paracompact uniform honeycomb, constructed from triangular tiling, hexagonal tiling, and trihexagonal tiling cells, in a rhombitrihexagonal tiling vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

Hexagonal tiling-triangular tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbol{(3,6,3,6)} or {(6,3,6,3)}
Coxeter diagrams or or or
Cells{3,6}
{6,3}
r{6,3}
Facestriangular {3}
square {4}
hexagon {6}
Vertex figure
rhombitrihexagonal tiling
Coxeter group[(6,3)[2]]
PropertiesVertex-uniform, edge-uniform

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Symmetry

A lower symmetry form, index 6, of this honeycomb can be constructed with [(6,3,6,3*)] symmetry, represented by a cube fundamental domain, and an octahedral Coxeter diagram .

The cyclotruncated octahedral-hexagonal tiling honeycomb, has a higher symmetry construction as the order-4 hexagonal tiling.

gollark: <@301477111229841410> I have a webserver which does other things, and the memory usage is very very low. So is CPU. I don't get much traffic.
gollark: Browser extensions are generally autoupdated, so they probably *could* release a malicious version which steals them and get a bunch before anyone notices.
gollark: I would be surprised if it could actually run an entirely different language to the one it's designed for. Technically you could maybe run a Python interpreter written in JS, but that would be difficult and hilariously inefficient.
gollark: Obviously your password is decrypted at some point by a password manager. I'm not sure how you'd expect it to work.
gollark: They can still stick there to dissuade people even if they aren't actually binding.

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 ISBN 0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II,III,IV,V, p212-213)
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapter 16-17: Geometries on Three-manifolds I,II)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.