Hermite–Hadamard inequality
In mathematics, the Hermite–Hadamard inequality, named after Charles Hermite and Jacques Hadamard and sometimes also called Hadamard's inequality, states that if a function ƒ : [a, b] → R is convex, then the following chain of inequalities hold:
The inequality has been generalized to higher dimensions: if is a bounded, convex domain and is a positive convex function, then
where is a constant depending only on the dimension.
A corollary on Vandermonde-type integrals
Suppose that −∞ < a < b < ∞, and choose n distinct values {xj}n
j=1 from (a, b). Let f:[a, b] → ℝ be convex, and let I denote the "integral starting at a" operator; that is,
- .
Then
Equality holds for all {xj}n
j=1 iff f is linear, and for all f iff {xj}n
j=1 is constant, in the sense that
The result follows from induction on n.
References
- Jacques Hadamard, "Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann", Journal de Mathématiques Pures et Appliquées, volume 58, 1893, pages 171–215.
- Zoltán Retkes, "An extension of the Hermite–Hadamard Inequality", Acta Sci. Math. (Szeged), 74 (2008), pages 95–106.
- Mihály Bessenyei, "The Hermite–Hadamard Inequality on Simplices", American Mathematical Monthly, volume 115, April 2008, pages 339–345.
- Flavia-Corina Mitroi, Eleutherius Symeonidis, "The converse of the Hermite-Hadamard inequality on simplices", Expo. Math. 30 (2012), pp. 389–396. doi:10.1016/j.exmath.2012.08.011; ISSN 0723-0869
- Stefan Steinerberger, The Hermite-Hadamard Inequality in Higher Dimensions, The Journal of Geometric Analysis, 2019.