Hermite–Hadamard inequality

In mathematics, the Hermite–Hadamard inequality, named after Charles Hermite and Jacques Hadamard and sometimes also called Hadamard's inequality, states that if a function ƒ : [a, b]  R is convex, then the following chain of inequalities hold:

The inequality has been generalized to higher dimensions: if is a bounded, convex domain and is a positive convex function, then

where is a constant depending only on the dimension.

A corollary on Vandermonde-type integrals

Suppose that ∞ < a < b < ∞, and choose n distinct values {xj}n
j=1
from (a, b). Let f:[a, b] → be convex, and let I denote the "integral starting at a" operator; that is,

.

Then

Equality holds for all {xj}n
j=1
iff f is linear, and for all f iff {xj}n
j=1
is constant, in the sense that

The result follows from induction on n.

gollark: It's not irrelevant *at all*.
gollark: I mean, I assume they already *are*, honestly.
gollark: And what if they expand "dangerous activity" to be "criticizing the NSA"?
gollark: I mean, it's probably all being intercepted, and I assume much is being logged.
gollark: I just, you know, value privacy.

References

  • Jacques Hadamard, "Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann", Journal de Mathématiques Pures et Appliquées, volume 58, 1893, pages 171215.
  • Zoltán Retkes, "An extension of the HermiteHadamard Inequality", Acta Sci. Math. (Szeged), 74 (2008), pages 95106.
  • Mihály Bessenyei, "The HermiteHadamard Inequality on Simplices", American Mathematical Monthly, volume 115, April 2008, pages 339345.
  • Flavia-Corina Mitroi, Eleutherius Symeonidis, "The converse of the Hermite-Hadamard inequality on simplices", Expo. Math. 30 (2012), pp. 389–396. doi:10.1016/j.exmath.2012.08.011; ISSN 0723-0869
  • Stefan Steinerberger, The Hermite-Hadamard Inequality in Higher Dimensions, The Journal of Geometric Analysis, 2019.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.