Helmholtz theorem (classical mechanics)

The Helmholtz theorem of classical mechanics reads as follows:

Let

be the Hamiltonian of a one-dimensional system, where

is the kinetic energy and

is a "U-shaped" potential energy profile which depends on a parameter . Let denote the time average. Let

Then

Remarks

The thesis of this theorem of classical mechanics reads exactly as the heat theorem of thermodynamics. This fact shows that thermodynamic-like relations exist between certain mechanical quantities. This in turn allows to define the "thermodynamic state" of a one-dimensional mechanical system. In particular the temperature is given by time average of the kinetic energy, and the entropy by the logarithm of the action (i.e.).
The importance of this theorem has been recognized by Ludwig Boltzmann who saw how to apply it to macroscopic systems (i.e. multidimensional systems), in order to provide a mechanical foundation of equilibrium thermodynamics. This research activity was strictly related to his formulation of the ergodic hypothesis. A multidimensional version of the Helmholtz theorem, based on the ergodic theorem of George David Birkhoff is known as generalized Helmholtz theorem.

gollark: What? How would that help people?
gollark: You should use OpenPOWER.
gollark: RISC-V isn't open enough, actually.
gollark: I kind of want smart home things, but I have no actual usecase and the maintenance burden it would add to my mess of scripts and infrastructure would likely be bad.
gollark: There are the naïve enthusiastic people who go buy consumer IoT devices and them replace then when they inevitably stop being supported, the grizzled sysadmin/developer types who have seen the horrors of modern computing and don't trust it, the mystical few who are competent enough to run their own stuff and have it work, and people who want to be/think they are that but who spend all their time recompiling the kernel on their smart fridge.

References

  • Helmholtz, H., von (1884a). Principien der Statik monocyklischer Systeme. Borchardt-Crelle’s Journal für die reine und angewandte Mathematik, 97, 111–140 (also in Wiedemann G. (Ed.) (1895) Wissenschafltliche Abhandlungen. Vol. 3 (pp. 142–162, 179–202). Leipzig: Johann Ambrosious Barth).
  • Helmholtz, H., von (1884b). Studien zur Statik monocyklischer Systeme. Sitzungsberichte der Kö niglich Preussischen Akademie der Wissenschaften zu Berlin, I, 159–177 (also in Wiedemann G. (Ed.) (1895) Wissenschafltliche Abhandlungen. Vol. 3 (pp. 163–178). Leipzig: Johann Ambrosious Barth).
  • Boltzmann, L. (1884). Über die Eigenschaften monocyklischer und anderer damit verwandter Systeme.Crelles Journal, 98: 68–94 (also in Boltzmann, L. (1909). Wissenschaftliche Abhandlungen (Vol. 3,pp. 122–152), F. Hasenöhrl (Ed.). Leipzig. Reissued New York: Chelsea, 1969).
  • Gallavotti, G. (1999). Statistical mechanics: A short treatise. Berlin: Springer.
  • Campisi, M. (2005) On the mechanical foundations of thermodynamics: The generalized Helmholtz theorem Studies in History and Philosophy of Modern Physics 36: 275–290
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.