Helmholtz theorem (classical mechanics)

The Helmholtz theorem of classical mechanics reads as follows:

Let

be the Hamiltonian of a one-dimensional system, where

is the kinetic energy and

is a "U-shaped" potential energy profile which depends on a parameter . Let denote the time average. Let

Then

Remarks

The thesis of this theorem of classical mechanics reads exactly as the heat theorem of thermodynamics. This fact shows that thermodynamic-like relations exist between certain mechanical quantities. This in turn allows to define the "thermodynamic state" of a one-dimensional mechanical system. In particular the temperature is given by time average of the kinetic energy, and the entropy by the logarithm of the action (i.e.).
The importance of this theorem has been recognized by Ludwig Boltzmann who saw how to apply it to macroscopic systems (i.e. multidimensional systems), in order to provide a mechanical foundation of equilibrium thermodynamics. This research activity was strictly related to his formulation of the ergodic hypothesis. A multidimensional version of the Helmholtz theorem, based on the ergodic theorem of George David Birkhoff is known as generalized Helmholtz theorem.

gollark: Assuming moderators can `/cf` other people's stuff, maybe Hydro was just happily going about banning me from his stuff (not requiring moderator powers), but accidentally stood in urn street and did that.
gollark: The coincidence of timing is possibly odd, given that I don't think I recently annoyed crazed too.
gollark: Anyway, since crazed appears to have *not* banned me from his other claims, perhaps hydro accidentally used magic mod powers to ban me from urn street or something.
gollark: Thanks to PotatOS Auto-Update, PotatOS users should receive the updated node.lua within about five minutes.
gollark: Okay, I don't think it's temperatures.

References

  • Helmholtz, H., von (1884a). Principien der Statik monocyklischer Systeme. Borchardt-Crelle’s Journal für die reine und angewandte Mathematik, 97, 111–140 (also in Wiedemann G. (Ed.) (1895) Wissenschafltliche Abhandlungen. Vol. 3 (pp. 142–162, 179–202). Leipzig: Johann Ambrosious Barth).
  • Helmholtz, H., von (1884b). Studien zur Statik monocyklischer Systeme. Sitzungsberichte der Kö niglich Preussischen Akademie der Wissenschaften zu Berlin, I, 159–177 (also in Wiedemann G. (Ed.) (1895) Wissenschafltliche Abhandlungen. Vol. 3 (pp. 163–178). Leipzig: Johann Ambrosious Barth).
  • Boltzmann, L. (1884). Über die Eigenschaften monocyklischer und anderer damit verwandter Systeme.Crelles Journal, 98: 68–94 (also in Boltzmann, L. (1909). Wissenschaftliche Abhandlungen (Vol. 3,pp. 122–152), F. Hasenöhrl (Ed.). Leipzig. Reissued New York: Chelsea, 1969).
  • Gallavotti, G. (1999). Statistical mechanics: A short treatise. Berlin: Springer.
  • Campisi, M. (2005) On the mechanical foundations of thermodynamics: The generalized Helmholtz theorem Studies in History and Philosophy of Modern Physics 36: 275–290
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.