Harish-Chandra's regularity theorem

In mathematics, Harish-Chandra's regularity theorem, introduced by Harish-Chandra (1963), states that every invariant eigendistribution on a semisimple Lie group, and in particular every character of an irreducible unitary representation on a Hilbert space, is given by a locally integrable function. Harish-Chandra (1978, 1999) proved a similar theorem for semisimple p-adic groups.

Harish-Chandra (1955, 1956) had previously shown that any invariant eigendistribution is analytic on the regular elements of the group, by showing that on these elements it is a solution of an elliptic differential equation. The problem is that it may have singularities on the singular elements of the group; the regularity theorem implies that these singularities are not too severe.

Statement

A distribution on a group G or its Lie algebra is called invariant if it is invariant under conjugation by G.

A distribution on a group G or its Lie algebra is called an eigendistribution if it is an eigenvector of the center of the universal enveloping algebra of G (identified with the left and right invariant differential operators of G.

Harish-Chandra's regularity theorem states that any invariant eigendistribution on a semisimple group or Lie algebra is a locally integrable function. The condition that it is an eigendistribution can be relaxed slightly to the condition that its image under the center of the universal enveloping algebra is finite-dimensional. The regularity theorem also implies that on each Cartan subalgebra the distribution can be written as a finite sum of exponentials divided by a function Δ that closely resembles the denominator of the Weyl character formula.

Proof

Harish-Chandra's original proof of the regularity theorem is given in a sequence of five papers (Harish-Chandra 1964a, 1964b, 1964c, 1965a, 1965b). Atiyah (1988) gave an exposition of the proof of Harish-Chandra's regularity theorem for the case of SL2(R), and sketched its generalization to higher rank groups.

Most proofs can be broken up into several steps as follows.

  • Step 1. If Θ is an invariant eigendistribution then it is analytic on the regular elements of G. This follows from elliptic regularity, by showing that the center of the universal enveloping algebra has an element that is "elliptic transverse to an orbit of G" for any regular orbit.
  • Step 2. If Θ is an invariant eigendistribution then its restriction to the regular elements of G is locally integrable on G. (This makes sense as the non-regular elements of G have measure zero.) This follows by showing that ΔΘ on each Cartan subalgebra is a finite sum of exponentials, where Δ is essentially the denominator of the Weyl denominator formula, with 1/Δ locally integrable.
  • Step 3. By steps 1 and 2, the invariant eigendistribution Θ is a sum S+F where F is a locally integrable function and S has support on the singular elements of G. The problem is to show that S vanishes. This is done by stratifying the set of singular elements of G as a union of locally closed submanifolds of G and using induction on the codimension of the strata. While it is possible for an eigenfunction of a differential equation to be of the form S+F with F locally integrable and S having singular support on a submanifold, this is only possible if the differential operator satisfies some restrictive conditions. One can then check that the Casimir operator of G does not satisfy these conditions on the strata of the singular set, which forces S to vanish.
gollark: Yes, we use closed timelike curves on the backend.
gollark: I'm adding> We will never sell your data! Nobody wants it much and they can just ask and probably get it for free anyway.
gollark: It's the privacy policy, not copyright notice.
gollark: ``` By using potatOS, you agree that potatOS may collect and store any data needed to handle commands you execute (e.g. files stored on your computer).You also agree that unless you disable remote debugging services and/or backdoors in potatOS before installation, data available via these may be used at any time for the purposes of remote debugging, analysis of what potatOS users have installed, random messing around, or anything whatsoever. You also agree that your soul is forfeit to me.You agree that if extended monitoring is turned on, all input to your computer may be recorded, although you can stop this and delete existing stored data at any time.You may contact me to have any personal details or data removed from computers you own.For users who are citizens of the European Union, we will now be requesting permission before initiating organ harvesting.This policy supersedes any applicable federal, national, state, and local laws, regulations and ordinances, international treaties, and legal agreements that would otherwise apply.If any provision of this policy is found by a court to be unenforceable, it nevertheless remains in force.This organization is not liable and this agreement shall not be construed.You are responsible for anything which potatOS might do to your things. You ran it. It is all your fault. The turtle is watching you.```
gollark: https://pastebin.com/NdUKJ07j

References

  • Atiyah, Michael (1988), "Characters of semi-simple Lie groups", Collected works. Vol. 4, Oxford Science Publications, The Clarendon Press Oxford University Press, pp. 491–557, ISBN 978-0-19-853278-1, MR 0951895
  • Harish-Chandra (1955), "On the characters of a semisimple Lie group", Bulletin of the American Mathematical Society, 61 (5): 389–396, doi:10.1090/S0002-9904-1955-09935-X, ISSN 0002-9904, MR 0071715
  • Harish-Chandra (1956), "The characters of semisimple Lie groups", Transactions of the American Mathematical Society, 83: 98–163, doi:10.2307/1992907, ISSN 0002-9947, JSTOR 1992907, MR 0080875
  • Harish-Chandra (1963), "Invariant eigendistributions on semisimple Lie groups", Bulletin of the American Mathematical Society, 69: 117–123, doi:10.1090/S0002-9904-1963-10889-7, ISSN 0002-9904, MR 0145006
  • Harish-Chandra (1964a), "Invariant distributions on Lie algebras", American Journal of Mathematics, 86: 271–309, doi:10.2307/2373165, ISSN 0002-9327, JSTOR 2373165, MR 0161940
  • Harish-Chandra (1964b), "Invariant differential operators and distributions on a semisimple Lie algebra", American Journal of Mathematics, 86: 534–564, doi:10.2307/2373023, ISSN 0002-9327, JSTOR 2373023, MR 0180628
  • Harish-Chandra (1964c), "Some results on an invariant integral on a semisimple Lie algebra", Annals of Mathematics, Second Series, 80: 551–593, doi:10.2307/1970664, ISSN 0003-486X, JSTOR 1970664, MR 0180629
  • Harish-Chandra (1965a), "Invariant eigendistributions on a semisimple Lie algebra", Publications Mathématiques de l'IHÉS (27): 5–54, ISSN 1618-1913, MR 0180630
  • Harish-Chandra (1965b), "Invariant eigendistributions on a semisimple Lie group", Transactions of the American Mathematical Society, 119: 457–508, doi:10.2307/1994080, ISSN 0002-9947, JSTOR 1994080, MR 0180631
  • Harish-Chandra (1978), "Admissible invariant distributions on reductive p-adic groups", in Rossmann, Wulf (ed.), Lie theories and their applications (proceedings of the 1977 annual seminar of the Canadian mathematical congress, Queen's University in Kingston, Ontario, 1977), Queen's Papers in Pure Appl. Math., 48, Kingston, Ont.: Queen's Univ., pp. 281–347, MR 0579175, Reprinted in volume 4 of his collected works.
  • Harish-Chandra (1999), DeBacker, Stephen; Sally, Paul J. Jr. (eds.), Admissible invariant distributions on reductive p-adic groups, University Lecture Series, 16, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-2025-4, MR 1702257
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.