Hans Peter Schlickewei

Hans Peter Schlickewei (born 1947) is a German mathematician, specializing in number theory and, in particular, the theory of transcendental numbers.

Hans Peter Schlickewei, Oberwolfach 2007

Schlickewei received his doctorate in 1975 at the University of Freiburg under the supervision of Theodor Schneider.[1] Schlickewei is a professor at the University of Marburg.[2]

He proved in 1976 the p-adic generalization of the subspace theorem of Wolfgang M. Schmidt.[3] Schlickerei's theorem implies the Thue-Siegel-Roth theorem, whose p-adic analogue was already proved in 1958 by David Ridout.[4]

In 1998 Schlickewei was an invited speaker with talk The Subspace Theorem and Applications at the International Congress of Mathematicians in Berlin.[5]

Selected publications

  • Schlickewei, H. P. (1976). "Die p-adische Verallgemeinerung des Satzes von Thue-Siegel-Roth-Schmidt". J. Reine Angew. Math. 1976 (288): 86–105. doi:10.1515/crll.1976.288.86.
  • Schinzel, A.; Schlickewei, H.; Schmidt, W. (1980). "Small solutions of quadratic congruences and small fractional parts of quadratic forms". Acta Arithmetica. 37 (1): 241–248.
  • Schlickewei, H. P. (1990). "S-unit equations over number fields". Invent. Math. 102: 95–107. Bibcode:1990InMat.102...95S. doi:10.1007/BF01233421.
  • Van Der Poorten, A. J.; Schlickewei, H. P. (1991). "Additive relations in fields". Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics. 51: 154–170. doi:10.1017/S144678870003336X.
  • Schlickewei, H. P. (1993). "Multiplicities of algebraic linear recurrrences". Acta Mathematica. 170 (2): 151–180. doi:10.1007/BF02392784.
  • Schlickewei, H. P. (1996). "Multiplicities of recurrence sequences". Acta Mathematica. 176 (2): 171–243. doi:10.1007/BF02551582.
  • Schlickewei, H. P. (1997). "The multiplicity of binary recurrences". Invent. Math. 129 (11): 11–36. Bibcode:1997InMat.129...11S. doi:10.1007/s002220050156.
  • Schlickewei, H. P.; Schmidt, W. P. (2000). "The number of solutions of polynomial-exponential equations". Compositio Math. 120 (2): 193–225.
  • Evertse, J.-H.; Schlickewei, H. P.; Schmidt, W. M. (2002). "Linear Equations in Variables which Lie in a Multiplicative Group". The Annals of Mathematics. 155 (3): 807. arXiv:math/0409604. doi:10.2307/3062133. JSTOR 3062133.
  • Approximation of algebraic numbers, pp. 107–170 in: D. Masser, Yu. V. Nesterenko, W. Schmidt, M. Waldschmidt (eds.): Diophantine Approximation, Lectures CIME Summer School 2000, Springer 2003
gollark: What do you *actually do*?!
gollark: `disclaimer this company is not a company and probably does nothing useful`
gollark: 🌘 ☃
gollark: Have you tried using Urn?
gollark: Plus you can't use closures.

References

  1. Hans Peter Schlickewei at the Mathematics Genealogy Project
  2. "Prof. Dr. Hans Peter Schlickewei". Philipps-Universität Marburg.
  3. Schlickewei, Hans Peter (1977). "On norm form equations". J. Number Theory. 9 (3): 370–380. doi:10.1016/0022-314X(77)90072-5. MR 0444562.
  4. Ridout, David (1958). "The p-adic generalization of the Thue-Siegel-Roth theorem". Mathematika. 5 (1): 40–48. doi:10.1112/S0025579300001339.
  5. Schlickewei, Hans Peter (1998). "The subspace theorem and applications". In: Proceedings of the International Congress of Mathematicians, 1998, Berlin. vol. 2. pp. 197–205.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.