Hadamard transform

The Hadamard transform (also known as the Walsh–Hadamard transform, Hadamard–Rademacher–Walsh transform, Walsh transform, or Walsh–Fourier transform) is an example of a generalized class of Fourier transforms. It performs an orthogonal, symmetric, involutive, linear operation on 2m real numbers (or complex, or hypercomplex numbers, although the Hadamard matrices themselves are purely real).

The product of a Boolean function and a Walsh matrix is its Walsh spectrum:[1]
(1, 0, 1, 0, 0, 1, 1, 0) × H(8) = (4, 2, 0, −2, 0, 2, 0, 2)
Fast Walsh–Hadamard transform, a faster way to calculate the Walsh spectrum of (1, 0, 1, 0, 0, 1, 1, 0).
The original function can be expressed by means of its Walsh spectrum as an arithmetical polynomial.

The Hadamard transform can be regarded as being built out of size-2 discrete Fourier transforms (DFTs), and is in fact equivalent to a multidimensional DFT of size 2 × 2 ×× 2 × 2.[2] It decomposes an arbitrary input vector into a superposition of Walsh functions.

The transform is named for the French mathematician Jacques Hadamard, the German-American mathematician Hans Rademacher, and the American mathematician Joseph L. Walsh.

Definition

The Hadamard transform Hm is a 2m × 2m matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2m real numbers xn into 2m real numbers Xk. The Hadamard transform can be defined in two ways: recursively, or by using the binary (base-2) representation of the indices n and k.

Recursively, we define the 1 × 1 Hadamard transform H0 by the identity H0 = 1, and then define Hm for m > 0 by:

where the 1/2 is a normalization that is sometimes omitted.

For m > 1, we can also define Hm by:

where represents the Kronecker product. Thus, other than this normalization factor, the Hadamard matrices are made up entirely of 1 and −1.

Equivalently, we can define the Hadamard matrix by its (k, n)-th entry by writing

where the kj and nj are the binary digits (0 or 1) of k and n, respectively. Note that for the element in the top left corner, we define: . In this case, we have:

This is exactly the multidimensional DFT, normalized to be unitary, if the inputs and outputs are regarded as multidimensional arrays indexed by the nj and kj, respectively.

Some examples of the Hadamard matrices follow.

where is the bitwise dot product of the binary representations of the numbers i and j. For example, if , then , agreeing with the above (ignoring the overall constant). Note that the first row, first column element of the matrix is denoted by .

H1 is precisely the size-2 DFT. It can also be regarded as the Fourier transform on the two-element additive group of Z/(2).

The rows of the Hadamard matrices are the Walsh functions.

Computational complexity

In the classical domain, the Hadamard transform can be computed in operations (), using the fast Hadamard transform algorithm.

In the quantum domain, the Hadamard transform can be computed in time, as it is a quantum logic gate that can be parallelized.

Quantum computing applications

In quantum information processing the Hadamard transformation, more often called Hadamard gate in this context (cf. quantum gate), is a one-qubit rotation, mapping the qubit-basis states and to two superposition states with equal weight of the computational basis states and . Usually the phases are chosen so that we have

in Dirac notation. This corresponds to the transformation matrix

in the basis, also known as the computational basis. The states and are known as and respectively, and together constitute the polar basis in quantum computing.

Many quantum algorithms use the Hadamard transform as an initial step, since it maps m qubits initialized with to a superposition of all 2m orthogonal states in the basis with equal weight.

Notably, computing the quantum Hadamard transform is simply the application of a Hadamard gate to each qubit individually because of the tensor product structure of the Hadamard transform. This simple result means the quantum Hadamard transform requires log n operations, compared to the classical case of n log n operations.

Hadamard gate operations

One application of the Hadamard gate to either a 0 or 1 qubit will produce a quantum state that, if observed, will be a 0 or 1 with equal probability (as seen in the first two operations). This is exactly like flipping a fair coin in the standard probabilistic model of computation. However, if the Hadamard gate is applied twice in succession (as is effectively being done in the last two operations), then the final state is always the same as the initial state.

Other applications

The Hadamard transform is also used in data encryption, as well as many signal processing and data compression algorithms, such as JPEG XR and MPEG-4 AVC. In video compression applications, it is usually used in the form of the sum of absolute transformed differences. It is also a crucial part of Grover's algorithm and Shor's algorithm in quantum computing. The Hadamard transform is also applied in experimental techniques such as NMR, mass spectrometry and crystallography. It is additionally used in some versions of locality-sensitive hashing, to obtain pseudo-random matrix rotations.

gollark: * namespacing/modules
gollark: Besides, most C-like ones add stuff like:* memory management* actual libraries
gollark: .
gollark: Doesn't make it *good*
gollark: And bad for most uses!

See also

  • Ritter, Terry (August 1996). "Walsh-Hadamard Transforms: A Literature Survey".
  • Akansu, A.N.; Poluri, R. (July 2007). "Walsh-Like Nonlinear Phase Orthogonal Codes for Direct Sequence CDMA Communications" (PDF). IEEE Transactions on Signal Processing. 55 (7): 3800–6. doi:10.1109/TSP.2007.894229.
  • Pan, Jeng-shyang Data Encryption Method Using Discrete Fractional Hadamard Transformation (May 28, 2009)
  • Lachowicz, Dr. Pawel. Walsh–Hadamard Transform and Tests for Randomness of Financial Return-Series (April 7, 2015)
  • Beddard, Godfrey; Yorke, Briony A. (January 2011). "Pump-probe Spectroscopy using Hadamard Transforms" (PDF).
  • Yorke, Briony A.; Beddard, Godfrey; Owen, Robin L.; Pearson, Arwen R. (September 2014). "Time-resolved crystallography using the Hadamard transform". Nature Methods. 11 (11): 1131–1134. doi:10.1038/nmeth.3139. PMC 4216935. PMID 25282611.

References

  1. Compare Figure 1 in Townsend, W. J.; Thornton, M. A. "Walsh Spectrum Computations Using Cayley Graphs". CiteSeerX 10.1.1.74.8029. Cite journal requires |journal= (help)
  2. Kunz, H.O. (1979). "On the Equivalence Between One-Dimensional Discrete Walsh-Hadamard and Multidimensional Discrete Fourier Transforms". IEEE Transactions on Computers. 28 (3): 267–8. doi:10.1109/TC.1979.1675334.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.