Guido Hoheisel

Guido Karl Heinrich Hoheisel (14 July 1894 – 11 October 1968) was a German mathematician and professor of mathematics at the University of Cologne.

Guido Hoheisel (1930)

Academic Life

He did his PhD in 1920 from the University of Berlin under the supervision of Erhard Schmidt.[1] During World War II Hoheisel was required to teach classes simultaneously at three universities, in Cologne, Bonn, and Münster.[2] His doctoral students include Arnold Schönhage.

Hoheisel contributed to the journal Deutsche Mathematik.

Selected Results

Hoheisel is known for a result on gaps between prime numbers:[3] He proved that if π(x) denotes the prime-counting function, then there exists a constant θ < 1 such that

π(x + xθ) − π(x) ~ xθ/log(x),

as x tends to infinity, implying that if pn denotes the n-th prime number then

pn+1pn < pnθ,

for all sufficiently large n. In fact he showed that one may take

θ = 32999/33000 = 1 - 0.000(03),

with (03) denoting periodic repeatition.

Selected works

  • Gewöhnliche Differentialgleichungen 1926;[4] 2nd edition 1930;[5] 7th edition 1965
  • Partielle Differentialgleichungen 1928; 3rd edition 1953
  • Aufgabensammlung zu den gewöhnlichen und partiellen Differentialgleichungen 1933[6]
  • Integralgleichungen 1936;[7] revised and expanded 2nd edition 1963
  • Existenz von Eigenwerten und Vollständigkeitskriterium 1943
  • Integral equations translated by A. Mary Tropper [1968, c1967]
gollark: Design AND MAKE...
gollark: Stop using Krome?
gollark: That would just be a Java implementation of `cat` in the Enterprise FizzBuzz style.
gollark: Did you mean: Aaargh Why
gollark: I said *client-side*.

References

  1. Guido Hoheisel at the Mathematics Genealogy Project.
  2. Segal, Sanford L. (2003), Mathematicians under the Nazis, Princeton University Press, p. 210, ISBN 978-0-691-00451-8.
  3. G. Hoheisel, Primzahlprobleme in der Analysis, Berliner Sitzungsberichte, pages 580-588, (1930)
  4. Cohen, A. (1929). "Review: Gewöhnliche Differentialgleichungen by G. Hoheisel" (PDF). Bull. Amer. Math. Soc. 35 (1): 136–137. doi:10.1090/s0002-9904-1929-04716-5.
  5. Longley, W. R. (1932). "Review: Gewöhnliche Differentialgleichungen by G. Hoheisel" (PDF). Bull. Amer. Math. Soc. 38 (7): 478–479. doi:10.1090/s0002-9904-1932-05447-7.
  6. Longley, W. R. (1933). "Review: Aufgabensammlung zu den gewöhnlichen und partiellen Differentialgleichungen by G. Hoheisel" (PDF). Bull. Amer. Math. Soc. 39 (9): 652–653. doi:10.1090/s0002-9904-1933-05695-1.
  7. Longley, W. R. (1937). "Review: Integralgleichungen by G. Hoheisel" (PDF). Bull. Amer. Math. Soc. 43 (1): 14–15. doi:10.1090/s0002-9904-1937-06480-9.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.