Grothendieck local duality
In commutative algebra, Grothendieck local duality is a duality theorem for cohomology of modules over local rings, analogous to Serre duality of coherent sheaves.
Statement
Suppose that R is a Cohen–Macaulay local ring of dimension d with maximal ideal m and residue field k = R/m. Let E(k) be a Matlis module, an injective hull of k, and let Ω be the completion of its dualizing module. Then for any R-module M there is an isomorphism of modules over the completion of R:
where Hm is a local cohomology group.
There is a generalization to Noetherian local rings that are not Cohen–Macaulay, that replaces the dualizing module with a dualizing complex.
gollark: (Yay)
gollark: (Why not)
gollark: ~~it still breaks on high Unicode characters~~
gollark: After you updated?
gollark: I'm using a different/sane JSON library though *it* will likely need changing to handle CC and its stupidity.
See also
References
- Bruns, Winfried; Herzog, Jürgen (1993), Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, ISBN 978-0-521-41068-7, MR 1251956
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.