Godeaux surface

In mathematics, a Godeaux surface is one of the surfaces of general type introduced by Lucien Godeaux in 1931. Other surfaces constructed in a similar way with the same Hodge numbers are also sometimes called Godeaux surfaces. Surfaces with the same Hodge numbers (such as Barlow surfaces) are called numerical Godeaux surfaces.

Construction

The cyclic group of order 5 acts freely on the Fermat surface of points (w : x : y : z) in P3 satisfying w5 + x5 + y5 + z5 = 0 by mapping (w : x : y : z) to (w:ρx:ρ2y:ρ3z) where ρ is a fifth root of 1. The quotient by this action is the original Godeaux surface.

Invariants

The fundamental group (of the original Godeaux surface) is cyclic of order 5. It has invariants like rational surfaces do, though it is not rational. The square of the first Chern class (and moreover the canonical class is ample).

Hodge diamond
1
00
090
00
1
gollark: Since most people handwave that kind of issue anyway, I assume the main practical issues are just ickiness-related.
gollark: There are some reasonable arguments regarding animal welfare. While IIRC the insect meat is more energy-dense, insects are small so you need lots more insects to get some amount of energy than you would for, say, sheep. Most people would rank each insect as less important/worthy-of-moral-consideration than the sheep, but potentially not *enough* lower that it's equal/better given the large number.
gollark: It's not like they have spikes/thorns and poisons just for decoration.
gollark: I suppose there are a lot of policies which could be cool™ with good governance but are bad in any practical setting.
gollark: A while ago. I think this would be an example of "government bad".

See also

References

  • Barth, Wolf P.; Hulek, Klaus; Peters, Chris A.M.; Van de Ven, Antonius (2004), Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 4, Springer-Verlag, Berlin, ISBN 978-3-540-00832-3, MR 2030225
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.