Glucoraphanin

Glucoraphanin is a glucosinolate found in broccoli,[1] cauliflower,[2] and mustard.[3]

Glucoraphanin

Potassium salt of glucoraphanin
Names
IUPAC name
1-S-[(1E)-5-(methylsulfinyl)-N-(sulfonatooxy)pentanimidoyl]-1-thio-β-D-glucopyranose
Other names
Glucorafanin; 4-Methylsulfinylbutyl glucosinolate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
Properties
C12H23NO10S3
Molar mass 437.49 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Glucoraphanin is converted to sulforaphane by the enzyme myrosinase[4]. In plants, sulforaphane deters insect predators and acts as a selective antibiotic.[5] In humans, sulforaphane has been studied for its potential effects in neurodegenerative[6] and cardiovascular diseases.[7]

Due to the potential health benefits, a variety of broccoli has been bred to contain two to three times more glucoraphanin than standard broccoli.[8]

Romanesco broccoli has been found to contain ten times more glucoraphanin than typical broccoli varieties.[9] Frostara, Black Tuscany and red cabbage also contain much higher levels of glucoraphanin than broccoli.[9]

References

  1. James, D.; Devaraj, S.; Bellur, P.; Lakkanna, S.; Vicini, J.; Boddupalli, S. (2012). "Novel concepts of broccoli sulforaphanes and disease: Induction of phase II antioxidant and detoxification enzymes by enhanced-glucoraphanin broccoli". Nutrition Reviews. 70 (11): 654–65. doi:10.1111/j.1753-4887.2012.00532.x. PMID 23110644.
  2. Jeffery, E. H.; Brown, A. F.; Kurilich, A. C.; Keck, A. S.; Matusheski, N.; Klein, B. P.; Juvik, J. A. (2003). "Variation in content of bioactive components in broccoli". Journal of Food Composition and Analysis. 16 (3): 323–330. doi:10.1016/S0889-1575(03)00045-0.
  3. Oh, K.; SangOk, K.; Rak, C. (2015). "Sinigrin content of different parts of Dolsan leaf mustard". Korean Journal of Food Preservation. 22 (4): 553–558. doi:10.11002/kjfp.2015.22.4.553.
  4. Cuomo, Valentina; Luciano, Fernando B.; Meca, Giuseppe; Ritieni, Alberto; Mañes, Jordi (26 November 2014). "Bioaccessibility of glucoraphanin from broccoli using an gastrointestinal digestion model". CyTA - Journal of Food. 13 (3): 361–365. doi:10.1080/19476337.2014.984337.
  5. Fahey, Jed W.; Holtzclaw, W. David; Wehage, Scott L.; Wade, Kristina L.; Stephenson, Katherine K.; Talalay, Paul; Mukhopadhyay, Partha (2 November 2015). "Sulforaphane Bioavailability from Glucoraphanin-Rich Broccoli: Control by Active Endogenous Myrosinase". PLOS ONE. 10 (11): e0140963. doi:10.1371/journal.pone.0140963. PMC 4629881. PMID 26524341.
  6. Tarozzi, Andrea; Angeloni, Cristina; Malaguti, Marco; Morroni, Fabiana; Hrelia, Silvana; Hrelia, Patrizia (2013). "Sulforaphane as a Potential Protective Phytochemical against Neurodegenerative Diseases". Oxidative Medicine and Cellular Longevity. 2013: 1–10. doi:10.1155/2013/415078. PMC 3745957. PMID 23983898.
  7. Bai, Yang; Wang, Xiaolu; Zhao, Song; Ma, Chunye; Cui, Jiuwei; Zheng, Yang (2015). "Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation". Oxidative Medicine and Cellular Longevity. 2015: 1–13. doi:10.1155/2015/407580. PMC 4637098. PMID 26583056.
  8. Cheng, Maria (October 26, 2011). "UK scientists grow super broccoli". Associated Press. Archived from the original on 12 May 2018. Retrieved 10 November 2011.
  9. Hahn, Christoph; Müller, Anja; Kuhnert, Nikolai; Albach, Dirk (2016-04-27). "Diversity of Kale (Brassica oleracea var. sabellica): Glucosinolate Content and Phylogenetic Relationships". Journal of Agricultural and Food Chemistry. 64 (16): 3215–3225. doi:10.1021/acs.jafc.6b01000. ISSN 0021-8561.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.