Giovanni Vignale

Giovanni Vignale is an Italian American physicist and Professor of Physics at the University of Missouri. Vignale is known for his work on density functional theory - a theoretical approach to the quantum many-body problem - and for several contributions to many-particle physics and spintronics. He is also the author of a monograph on the "Quantum Theory of the Electron Liquid" (with Gabriele F. Giuliani) and a book entitled "The Beautiful Invisible - Creativity, imagination, and theoretical physics".

Giovanni Vignale
Born1957
Napoli, Italy
Alma materScuola Normale Superiore, University of Pisa Northwestern University
Known forCurrent Density Functional Theory, Spin Coulomb drag,

Quantum Theory of the Electron Liquid,[1]

The Beautiful Invisible[2]
Scientific career
FieldsDensity Functional Theory, Condensed Matter Theory
InstitutionsUniversity of Missouri
Doctoral advisorKundan S. Singwi
Other academic advisorsFranco Bassani
Websitehttp://faculty.missouri.edu/~vignaleg/

Life

Vignale was born in Naples, Italy, in 1957 and studied physics at the Scuola Normale Superiore in Pisa, where he graduated in 1979. He completed his Ph.D. at Northwestern University in 1984, with a thesis on "Collective modes, effective interactions and superconductivity in the electron-hole liquid". He was a postdoctoral researcher at the Max-Planck-Institute for Solid State Research in Stuttgart, Germany and at Oak Ridge National Laboratory in Oak Ridge, Tennessee, before joining the Department of Physics and Astronomy at the University of Missouri in 1988. He is Curators' Professor of Physics at the University of Missouri since 2006 and Fellow of the American Physical Society since 1997.

Research contributions

Vignale is known for his contributions to density functional theory. In 1987 he formulated, in collaboration with Mark Rasolt, the current density functional theory for electronic systems in the presence of a static magnetic field.[3] In 1996 he developed, with Walter Kohn (Nobel Laureate in Chemistry, 1998), the time-dependent current density functional theory for electronic systems subjected to time-dependent electromagnetic fields.[4] He is also known for his contributions to spintronics: in 2000, with Irene D'Amico, he introduced the concept of spin Coulomb drag[5] (experimentally observed in 2005[6]). In 2003 he proposed, with Michael E. Flatte' of the University of Iowa, the theoretical concept for a unipolar spin diode and a unipolar spin transistor.[7][8]

Vignale is co-author (with Gabriele F. Giuliani) of a monograph on the quantum electron liquid,[1] which is used by students and researchers for reference and self-study. In 2011 he published a non-technical book "The Beautiful Invisible - Creativity, imagination, and theoretical physics",[2] which presents theoretical physics as a form of art. In the introduction to this book he writes “A good scientific theory is like a symbolic tale, an allegory of reality. Its characters are abstractions that may not exist in reality; yet they give us a way of thinking more deeply about reality. Like a fine work of art, the theory creates its own world: it transforms reality into something else – an illusion perhaps, but an illusion that has more value than the literal fact.”

gollark: What do Linux users do to change a lightbulb?First, a user creates a bug report, only for it to be closed with "could not reproduce" as the developers got to it in the day. Eventually, some nights later, someone realizes that it is actually a problem, and decides to start work on a fix, soliciting the help of other people.Debates soon break out on the architecture of the new lightbulb - should they replace it with an incandescent bulb (since the bulb which broke was one of those), try and upgrade it to a halogen or LED bulb, which are technically superior if more complex. or go to a simpler and perhaps more reliable solution such as a fire?While an LED bulb is decided on, they eventually, after yet more debate, deem off-the-shelf bulbs unsuitable, and decide to make their own using commercially available LED modules. However, some of the group working on this are unhappy with this, and splinter off, trying to set up their own open semiconductor production operation to produce the LEDs.Despite delays introduced by feature creep, as it was decided halfway through to also add RGB capability and wireless control, the main group still manages to produce an early alpha, and tests it as a replacement for the original bulb. Unfortunately it stops working after a few days of use, and debugging of the system suggests that the problem is because of their power supply - the bulb needs complex, expensive, and somewhat easily damaged circuitry to convert the mains AC power into DC suitable for the LEDs, and they got that bit a bit wrong.So they decide to launch their own power grid and lighting fixture standard, which is, although incompatible with every other device, technically superior, and integrates high-speed networking so they can improve the control hardware. Having completely retrofitted the house the original lightbulb failed in and put all their designs and code up on GitHub, they deem the project a success, and after only a year!
gollark: Minetest is already a thing.
gollark: It really isn't.
gollark: Most people of my generation just use popular social media apps on a locked down phone of some sort and may not know what a "file" or "terminal" or "potatOS" is.
gollark: It is, yes.

References

  1. Quantum Theory of the electron liquid, Cambridge University Press, 2005
  2. Oxford University Press, 2011
  3. Vignale, G.; Rasolt, Mark (1987-11-16). "Density-functional theory in strong magnetic fields". Physical Review Letters. American Physical Society (APS). 59 (20): 2360–2363. doi:10.1103/physrevlett.59.2360. ISSN 0031-9007.
  4. Vignale, G.; Kohn, Walter (1996-09-02). "Current-Dependent Exchange-Correlation Potential for Dynamical Linear Response Theory". Physical Review Letters. American Physical Society (APS). 77 (10): 2037–2040. arXiv:cond-mat/9605052. doi:10.1103/physrevlett.77.2037. ISSN 0031-9007.
  5. D’Amico, Irene; Vignale, Giovanni (2000-08-15). "Theory of spin Coulomb drag in spin-polarized transport". Physical Review B. American Physical Society (APS). 62 (8): 4853–4857. doi:10.1103/physrevb.62.4853. hdl:10355/7925. ISSN 0163-1829.
  6. Weber, C. P.; Gedik, N.; Moore, J. E.; Orenstein, J.; Stephens, J.; Awschalom, D. D. (2005). "Observation of spin Coulomb drag in a two-dimensional electron gas". Nature. Springer Science and Business Media LLC. 437 (7063): 1330–1333. doi:10.1038/nature04206. ISSN 0028-0836.
  7. Flatté, M. E.; Vignale, G. (2001-02-26). "Unipolar spin diodes and transistors". Applied Physics Letters. AIP Publishing. 78 (9): 1273–1275. doi:10.1063/1.1348317. hdl:10355/7923. ISSN 0003-6951.
  8. US Patents No. 6,624,490 - 6,696,737 and 6,919,213
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.